@article{HerzschuhMischkeMeyeretal.2010, author = {Herzschuh, Ulrike and Mischke, Steffen and Meyer, Hanno and Plessen, Birgit and Zhang, Chengjun}, title = {Using variations in the stable carbon isotope composition of macrophyte remains to quantify nutrient dynamics in lakes}, issn = {0921-2728}, doi = {10.1007/s10933-009-9365-0}, year = {2010}, abstract = {The apparent isotope enrichment factor epsilon(macrophyte) of submerged plants (epsilon(macrophyte-DIC) = delta C-13(macrophyte) - delta C-13(DIC)) is indicative of dissolved inorganic carbon (DIC) supply in neutral to alkaline waters and is related to variations in aquatic productivity (Papadimitriou et al. in Limnol Oceanogr 50:1084-1095, 2005). This paper aims to evaluate the usage of epsilon(macrophyte) inferred from isotopic analyses of submerged plant fossils in addition to analyses of lake carbonate as a palaeolimnological proxy for former HCO3 (-) concentrations. Stable carbon isotopic analysis of modern Potamogeton pectinatus leaves and its host water DIC from the Tibetan Plateau and Central Yakutia (Russia) yielded values between -23.3 and +0.4aEuro degrees and between +14.0 and +6.5aEuro degrees, respectively. Values of epsilon (Potamogeton-DIC) (range -15.4 to +1.1aEuro degrees) from these lakes are significantly correlated with host water HCO3 (-) concentration (range 78-2,200 mg/l) (r = -0.86; P < 0.001), thus allowing for the development of a transfer function. Palaeo-epsilon (Potamogeton-ostracods) values from Luanhaizi Lake on the NE Tibetan Plateau, as inferred from the stable carbon isotope measurement of fossil Potamogeton pectinatus seeds (range -24 to +2.8aEuro degrees) and ostracods (range -7.8 to +7.5\%) range between -14.8 and 1.6aEuro degrees. Phases of assumed disequilibrium between delta C-13(DIC) and delta C-13(ostracods) known to occur in charophyte swards (as indicated by the deposition of charophyte fossils) were excluded from the analysis of palaeo-epsilon. The application of the epsilon (Potamogeton-DIC)-HCO3 (-) transfer function yielded a median palaeo-HCO3 (-) -concentration of 290 mg/l. Variations in the dissolved organic carbon supply compare well with aquatic plant productivity changes and lake level variability as inferred from a multiproxy study of the same record including analyses of plant macrofossils, ostracods, carbonate and organic content.}, language = {en} } @article{HerzschuhMischkeMeyeretal.2010, author = {Herzschuh, Ulrike and Mischke, Steffen and Meyer, Hanno and Plessen, Birgit and Zhang, Chengjun}, title = {Lake nutrient variability inferred from elemental (C, N, S) and isotopic (delta C-13, delta N-15) analyses of aquatic plant macrofossils}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2010.05.011}, year = {2010}, abstract = {This paper aims to highlight the potential of using elemental and stable isotope analyses of aquatic macrophytes in palaeolimnological studies. Potamogeton pectinatus material was collected from modem plants (n=68) and from late glacial and Holocene-aged sediments from Koucha Lake (northeastern Tibetan Plateau; 34.0 degrees N; 97.2 degrees E; 4540 m a.s.l.). It was analyzed for delta C-13(Potamogeton) (modern: -23 to 0 parts per thousand, fossil: -19 to -4 parts per thousand) and delta N-15(Potamogeton) (modern: -11.0 to +13.8 parts per thousand, fossil: -9.5 to +6.7 parts per thousand) in addition to elemental carbon and nitrogen (modem C/N-Potamogeton: 7 to 29; fossil: 13 to 68) and sulfur (fossil: 188-899 mu mol/g dry weight). Fossil data were interpreted in terms of palaeo-nutrient availability and palaeo-productivity based on the modem relationships between various proxies and certain environmental data. Productivity of Potamogeton pectinatus mats at Koucha Lake as indicated by palaeo-epsilon(Potamogeton-TIC) (i.e. the enrichment of delta C-13(Potamogeton) relative to the delta(CTIC)-C-13) was reduced during periods of high conductivity, especially between 10.3 and 7.4 cal kyr BP. Potamogeton pectinatus material from these periods was also characterized by high S-Potamogeton indicating high sulfide concentrations and anoxic conditions within the sediments. However, C/N- Potamogeton ratios and delta N-15(Potamogeton) from the lower core section were found to have been altered by decompositional processes. A pronounced shift in the aquatic productivity of Lake Koucha occurred at similar to 7.4 cal kyr BP when the hydrological conditions shifted towards an open lake system and water depth increased. At this time a strong increase in productivity led to a strong decrease in the water HCO3- concentration as inferred from the application of a epsilon-(Potamogeton-TIC)-InHCO3- transfer function. A comparison of reconstructed productivity changes from Koucha Lake with further environmental proxies suggests that primary productivity changes are probably a function of internal lake dynamics and were only indirectly triggered by climate change.}, language = {en} } @article{BrunelleSigmanJaccardetal.2010, author = {Brunelle, Brigitte G. and Sigman, Daniel M. and Jaccard, Samuel Laurent and Keigwin, Lloyd D. and Plessen, Birgit and Schettler, Georg and Cook, Mea S. and Haug, Gerald H.}, title = {Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2010.03.010}, year = {2010}, abstract = {In piston cores from the open subarctic Pacific and the Okhotsk Sea, diatom-bound delta N-15 (delta N-15(db)), biogenic opal, calcium carbonate, and barium were measured from coretop to the previous glacial maximum (MIS 6). Glacial intervals are generally characterized by high delta N-15(db) (similar to 8 parts per thousand) and low productivity, whereas interglacial intervals have a lower delta N-15(db) (5.7-6.3 parts per thousand) and indicate high biogenic productivity. These data extend the regional swath of evidence for nearly complete surface nutrient utilization during glacial maxima, consistent with stronger upper water column stratification throughout the subarctic region during colder intervals. An early deglacial decline in delta N-15(db) of 2 parts per thousand at similar to 17.5 ka, previously observed in the Bering Sea, is found here in the open subarctic Pacific record and arguably also in the Okhotsk, and a case can be made that a similar decrease in delta N-15(db) occurred in both regions at the previous deglaciation as well. The early deglacial delta N-15(db) decrease, best explained by a decrease in surface nutrient utilization, appears synchronous with southern hemisphere-associated deglacial changes and with the Heinrich 1 event in the North Atlantic. This delta N-15(db) decrease may signal the initial deglacial weakening in subarctic North Pacific stratification and/or a deglacial increase in shallow subsurface nitrate concentration. If the former, it would be the North Pacific analogue to the increase in vertical exchange inferred for the Southern Ocean at the time of Heinrich Event 1. In either case, the lack of any clear change in paleoproductivity proxies during this interval would seem to require an early deglacial decrease in the iron-to-nitrate ratio of subsurface nutrient supply or the predominance of light limitation of phytoplankton growth during the deglaciation prior to Bolling-Allerod warming.}, language = {en} }