@article{UtechtKlamroth2018, author = {Utecht, Manuel Martin and Klamroth, Tillmann}, title = {Local resonances in STM manipulation of chlorobenzene on Si(111)-7x7}, series = {Molecular physics}, volume = {116}, journal = {Molecular physics}, number = {13}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0026-8976}, doi = {10.1080/00268976.2018.1442939}, pages = {1687 -- 1696}, year = {2018}, abstract = {Hot localised charge carriers on the Si(111)-7x7 surface are modelled by small charged clusters. Such resonances induce non-local desorption, i.e. more than 10 nm away from the injection site, of chlorobenzene in scanning tunnelling microscope experiments. We used such a cluster model to characterise resonance localisation and vibrational activation for positive and negative resonances recently. In this work, we investigate to which extent the model depends on details of the used cluster or quantum chemistry methods and try to identify the smallest possible cluster suitable for a description of the neutral surface and the ion resonances. Furthermore, a detailed analysis for different chemisorption orientations is performed. While some properties, as estimates of the resonance energy or absolute values for atomic changes, show such a dependency, the main findings are very robust with respect to changes in the model and/or the chemisorption geometry. [GRAPHICS] .}, language = {en} } @article{MaassUtechtStremlauetal.2017, author = {Maass, Friedrich and Utecht, Manuel Martin and Stremlau, Stephan and Gille, Marie and Schwarz, Jutta and Hecht, Stefan and Klamroth, Tillmann and Tegeder, Petra}, title = {Electronic structure changes during the on-surface synthesis of nitrogen-doped chevron-shaped graphene nanoribbons}, series = {Physical review : B, Condensed matter and materials physics}, volume = {96}, journal = {Physical review : B, Condensed matter and materials physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.96.045434}, pages = {7}, year = {2017}, abstract = {Utilizing suitable precursor molecules, a thermally activated and surface-assisted synthesis results in the formation of defect-free graphene nanoribbons (GNRs), which exhibit electronic properties that are not present in extended graphene. Most importantly, they have a band gap in the order of a few electron volts, depending on the nanoribbon width. In this study, we investigate the electronic structure changes during the formation of GNRs, nitrogen-doped (singly and doubly N-doped) as well as non-N-doped chevron-shaped CGNRs on Au(111). Thus we determine the optical gaps of the precursor molecules, the intermediate nonaromatic polymers, and finally the aromatic GNRs, using high-resolution electron energy loss spectroscopy and density functional theory calculations. As expected, we find no influence of N-doping on the size of the optical gaps. The gap of the precursor molecules is around 4.5 eV. Polymerization leads to a reduction of the gap to a value of 3.2 eV due to elongation and thus enhanced delocalization. The CGNRs exhibit a band gap of 2.8 eV, thus the gap is further reduced in the nanoribbons, since they exhibit an extended delocalized pi-electron system.}, language = {en} } @article{BronnerUtechtHaaseetal.2014, author = {Bronner, Christopher and Utecht, Manuel Martin and Haase, Anton and Saalfrank, Peter and Klamroth, Tillmann and Tegeder, Petra}, title = {Electronic structure changes during the surface-assisted formation of a graphene nanoribbon}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {140}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4858855}, pages = {7}, year = {2014}, abstract = {High conductivity and a tunability of the band gap make quasi-one-dimensional graphene nanoribbons (GNRs) highly interesting materials for the use in field effect transistors. Especially bottom-up fabricated GNRs possess well-defined edges which is important for the electronic structure and accordingly the band gap. In this study we investigate the formation of a sub-nanometer wide armchair GNR generated on a Au(111) surface. The on-surface synthesis is thermally activated and involves an intermediate non-aromatic polymer in which the molecular precursor forms polyanthrylene chains. Employing angle-resolved two-photon photoemission in combination with density functional theory calculations we find that the polymer exhibits two dispersing states which we attribute to the valence and the conduction band, respectively. While the band gap of the non-aromatic polymer obtained in this way is relatively large, namely 5.25 +/- 0.06 eV, the gap of the corresponding aromatic GNR is strongly reduced which we attribute to the different degree of electron delocalization in the two systems.}, language = {en} } @article{MalicWeberRichteretal.2011, author = {Malic, E. and Weber, C. and Richter, M. and Atalla, V. and Klamroth, Tillmann and Saalfrank, Peter and Reich, Sebastian and Knorr, A.}, title = {Microscopic model of the optical absorption of carbon nanotubes functionalized with molecular spiropyran photoswitches}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {9}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.097401}, pages = {4}, year = {2011}, abstract = {The adsorption of molecules to the surface of carbon nanostructures opens a new field of hybrid systems with distinct and controllable properties. We present a microscopic study of the optical absorption in carbon nanotubes functionalized with molecular spiropyran photoswitches. The switching process induces a change in the dipole moment leading to a significant coupling to the charge carriers in the nanotube. As a result, the absorption spectra of functionalized tubes reveal a considerable redshift of transition energies depending on the switching state of the spiropyran molecule. Our results suggest that carbon nanotubes are excellent substrates for the optical readout of spiropyran-based molecular switches. The gained insights can be applied to other noncovalently functionalized one-dimensional nanostructures in an externally induced dipole field.}, language = {en} } @article{FlossKlamrothSaalfrank2011, author = {Floss, Gereon and Klamroth, Tillmann and Saalfrank, Peter}, title = {Laser-controlled switching of molecular arrays in an dissipative environment}, series = {Physical review : B, Condensed matter and materials physics}, volume = {83}, journal = {Physical review : B, Condensed matter and materials physics}, number = {10}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.83.104301}, pages = {9}, year = {2011}, abstract = {The optical switching of molecular ensembles in a dissipative environment is a subject of various fields of chemical physics and physical chemistry. Here we try to switch arrays of molecules from a stable collective ground state to a state in which all molecules have been transferred to another stable higher-energy configuration. In our model switching proceeds through electronically excited intermediates which are coherently coupled to each other through dipolar interactions, and which decay incoherently within a finite lifetime by coupling to a dissipative environment. The model is quite general, but parameters are chosen to roughly resemble the all-trans -> all-cis isomerization of an array of azobenzene molecules on a surface. Using analytical and optimal control pulses and the concept of "laser distillation," we demonstrate that for various aggregates (dimers up to hexamers), controlled and complete switching should be possible.}, language = {en} } @article{FuechselTremblayKlamrothetal.2012, author = {F{\"u}chsel, Gernot and Tremblay, Jean Christophe and Klamroth, Tillmann and Saalfrank, Peter and Frischkorn, C.}, title = {Concept of a single temperature for highly nonequilibrium laser-induced hydrogen desorption from a ruthenium surface}, series = {Physical review letters}, volume = {109}, journal = {Physical review letters}, number = {9}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.109.098303}, pages = {5}, year = {2012}, abstract = {Laser-induced condensed phase reactions are often interpreted as nonequilibrium phenomena that go beyond conventional thermodynamics. Here, we show by Langevin dynamics and for the example of femtosecond-laser desorption of hydrogen from a ruthenium surface that light adsorbates thermalize rapidly due to ultrafast energy redistribution after laser excitation. Despite the complex reaction mechanism involving hot electrons in the surface region, all desorption product properties are characterized by equilibrium distributions associated with a single, unique temperature. This represents an example of ultrahot chemistry on the subpicosecond time scale.}, language = {en} } @article{HuberKlamroth2005, author = {Huber, C. and Klamroth, Tillmann}, title = {Simulation of two-photon-photoelectron spectra at a jellium-vacuum interface}, year = {2005}, abstract = {In this paper we report on time dependent configuration interaction singles (TD-CIS) calculations aimed at simulating two-photon-photoelectron emission (2PPE) spectra of metal films, the latter treated within a one-dimensional jellium model. The method is based on a many-electron approach in which electron-electron-scattering is approximately accounted for and no artificial lifetimes have to be assumed for excited electrons. This contrasts with one-electron models where lifetimes and "dissipation" have to be introduced. The driving force for the photoelectron ejection in 2PPE experiments is the electric field of two laser pulses that are generally separated by a delay time, Delta t. To compute energy- and time-resolved 2PPE signals P(E, Delta t), a new scheme based on the time-energy method is proposed to analyze electronic wave packets in asymptotic regions of the potential}, language = {en} } @article{AndrianovKlamrothSaalfranketal.2005, author = {Andrianov, Igor V. and Klamroth, Tillmann and Saalfrank, Peter and Bovensiepen, U. and Gahl, Cornelius and Wolf, M. M.}, title = {Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface}, issn = {0021-9606}, year = {2005}, abstract = {Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent. (C) 2005 American Institute of Physics}, language = {en} } @article{NestKlamroth2005, author = {Nest, Mathias and Klamroth, Tillmann}, title = {Correlated many-electron dynamics : application to inelastic electron scattering at a metal film}, year = {2005}, abstract = {The multiconfiguration time-dependent Hartree-Fock and the time-dependent configuration interaction singles method are applied to the correlated many-electron dynamics of a one-dimensional jellium model system. We study the scattering of an initially free electron at a model film in the framework of both approaches. In particular, both methods are compared with regard to how they describe the underlying physical processes, namely inelastic electron scattering, inverse photoemission, and electron impact ionization}, language = {en} } @article{SaalfrankNestAndrianovetal.2006, author = {Saalfrank, Peter and Nest, Mathias and Andrianov, Igor V. and Klamroth, Tillmann and Kroner, Dominic and Beyvers, Stephanie}, title = {Quantum dynamics of laser-induced desorption from metal and semiconductor surfaces, and related phenomena}, volume = {18}, number = {30}, publisher = {IOP Publ.}, address = {Bristol}, issn = {1361-648X}, doi = {10.1088/0953-8984/18/30/S05}, pages = {S1425 -- S1459}, year = {2006}, abstract = {Recent progress towards a quantum theory of laser-induced desorption and related phenomena is reviewed, for specific examples. These comprise the photodesorption of NO from Pt(111), the scanning tunnelling microscope and laser- induced desorption and switching of H at Si(100), and the electron stimulated desorption and dissociation of CO at Ru(0001). The theoretical methods used for nuclear dynamics range from open-system density matrix theory over nonadiabatically coupled multi-state models to electron-nuclear wavepackets. Also, aspects of time-dependent spectroscopy to probe ultrafast nonadiabatic processes at surfaces will be considered for the example of two-photon photoemission of solvated electrons in ice layers on Cu(111)}, language = {en} }