@article{SedaghatmehrThirumalaikumarKamranfaretal.2021, author = {Sedaghatmehr, Mastoureh and Thirumalaikumar, Venkatesh P. and Kamranfar, Iman and Schulz, Karina and M{\"u}ller-R{\"o}ber, Bernd and Sampathkumar, Arun and Balazadeh, Salma}, title = {Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery}, series = {The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology}, volume = {72}, journal = {The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology}, number = {21}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erab304}, pages = {7498 -- 7513}, year = {2021}, abstract = {Moderate and temporary heat stresses prime plants to tolerate, and survive, a subsequent severe heat stress. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and can create a heat stress memory. We recently demonstrated that plastid-localized small heat shock protein 21 ( HSP21) is a key component of heat stress memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the heat stress recovery phase extends heat stress memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during heat stress recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with heat stress memory. ATI1 bodies co-localize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during heat stress recovery. Together, our results provide new insights into the module for control of the regulation of heat stress memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the heat stress effect at the cost of reducing the heat stress memory.}, language = {en} } @article{TabatabaeiAlseekhShahidetal.2022, author = {Tabatabaei, Iman and Alseekh, Saleh and Shahid, Mohammad and Leniak, Ewa and Wagner, Mateusz and Mahmoudi, Henda and Thushar, Sumitha and Fernie, Alisdair R. and Murphy, Kevin M. and Schm{\"o}ckel, Sandra M. and Tester, Mark and M{\"u}ller-R{\"o}ber, Bernd and Skirycz, Aleksandra and Balazadeh, Salma}, title = {The diversity of quinoa morphological traits and seed metabolic composition}, series = {Scientific data}, volume = {9}, journal = {Scientific data}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2052-4463}, doi = {10.1038/s41597-022-01399-y}, pages = {7}, year = {2022}, abstract = {Quinoa (Chenopodium quinoa Willd.) is an herbaceous annual crop of the amaranth family (Amaranthaceae). It is increasingly cultivated for its nutritious grains, which are rich in protein and essential amino acids, lipids, and minerals. Quinoa exhibits a high tolerance towards various abiotic stresses including drought and salinity, which supports its agricultural cultivation under climate change conditions. The use of quinoa grains is compromised by anti-nutritional saponins, a terpenoid class of secondary metabolites deposited in the seed coat; their removal before consumption requires extensive washing, an economically and environmentally unfavorable process; or their accumulation can be reduced through breeding. In this study, we analyzed the seed metabolomes, including amino acids, fatty acids, and saponins, from 471 quinoa cultivars, including two related species, by liquid chromatography - mass spectrometry. Additionally, we determined a large number of agronomic traits including biomass, flowering time, and seed yield. The results revealed considerable diversity between genotypes and provide a knowledge base for future breeding or genome editing of quinoa.}, language = {en} } @article{AlshareefOtterbachAlluetal.2022, author = {Alshareef, Nouf Owdah and Otterbach, Sophie L. and Allu, Annapurna Devi and Woo, Yong H. and de Werk, Tobias and Kamranfar, Iman and M{\"u}ller-R{\"o}ber, Bernd and Tester, Mark and Balazadeh, Salma and Schm{\"o}ckel, Sandra M.}, title = {NAC transcription factors ATAF1 and ANAC055 affect the heat stress response in Arabidopsis}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-022-14429-x}, pages = {15}, year = {2022}, abstract = {Pre-exposing (priming) plants to mild, non-lethal elevated temperature improves their tolerance to a later higher-temperature stress (triggering stimulus), which is of great ecological importance. 'Thermomemory' is maintaining this tolerance for an extended period of time. NAM/ATAF1/2/ CUC2 (NAC) proteins are plant-specific transcription factors (TFs) that modulate responses to abiotic stresses, including heat stress (HS). Here, we investigated the potential role of NACs for thermomemory. We determined the expression of 104 Ara bidopsis NAC genes after priming and triggering heat stimuli, and found ATAF1 expression is strongly induced right after priming and declines below control levels thereafter during thermorecovery. Knockout mutants of ATAF1 show better thermomemory than wild type, revealing a negative regulatory role. Differential expression analyses of RNA-seq data from ATAF1 overexpressor, ataf1 mutant and wild-type plants after heat priming revealed five genes that might be priming-associated direct targets of ATAF1: AT2G31260 (ATG9), AT2G41640 (GT61), AT3G44990 (XTH31), AT4G27720 and AT3G23540. Based on co-expression analyses applied to the aforementioned RNA-seq profiles, we identified ANAC055 to be transcriptionally co-regulated with ATAF1. Like atafl, anac055 mutants show improved thermomemory, revealing a potential co-control of both NACTFs over thermomemory. Our data reveals a core importance of two NAC transcription factors, ATAF1 and ANAC055, for thermomemory.}, language = {en} } @article{ThirumalaikumarGorkaSchulzetal.2020, author = {Thirumalaikumar, Venkatesh P. and Gorka, Michal and Schulz, Karina and Masclaux-Daubresse, Celine and Sampathkumar, Arun and Skirycz, Aleksandra and Vierstra, Richard D. and Balazadeh, Salma}, title = {Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1}, series = {Autophagy}, volume = {17}, journal = {Autophagy}, number = {9}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1554-8635}, doi = {10.1080/15548627.2020.1820778}, pages = {2184 -- 2199}, year = {2020}, abstract = {In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS.}, language = {en} } @misc{PajoroMadrigalMuinoetal.2014, author = {Pajoro, Alice and Madrigal, Pedro and Mui{\~n}o, Jose M. and Matus, Jos{\´e} Tom{\´a}s and Jin, Jian and Mecchia, Martin A. and Debernardi, Juan M. and Palatnik, Javier F. and Balazadeh, Salma and Arif, Muhammad and {\´O}'Maoil{\´e}idigh, Diarmuid S. and Wellmer, Frank and Krajewski, Pawel and Riechmann, Jos{\´e}-Luis and Angenent, Gerco C. and Kaufmann, Kerstin}, title = {Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {15}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-43113}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431139}, pages = {19}, year = {2014}, abstract = {Background: Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results: We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions: Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility.}, language = {en} } @article{ShubchynskyyBonieckaSchweighoferetal.2017, author = {Shubchynskyy, Volodymyr and Boniecka, Justyna and Schweighofer, Alois and Simulis, Justinas and Kvederaviciute, Kotryna and Stumpe, Michael and Mauch, Felix and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd and Boutrot, Freddy and Zipfel, Cyril and Meskiene, Irute}, title = {Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae}, series = {Journal of experimental botany}, volume = {68}, journal = {Journal of experimental botany}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erw485}, pages = {1169 -- 1183}, year = {2017}, abstract = {Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.}, language = {en} } @article{ShahnejatBushehriAlluMehterovetal.2017, author = {Shahnejat-Bushehri, Sara and Allu, Annapurna Devi and Mehterov, Nikolay and Thirumalaikumar, Venkatesh P. and Alseekh, Saleh and Fernie, Alisdair R. and Mueller-Roeber, Bernd and Balazadeh, Salma}, title = {Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00214}, pages = {13}, year = {2017}, abstract = {The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species.}, language = {en} } @article{WatanabeTohgeBalazadehetal.2018, author = {Watanabe, Mutsumi and Tohge, Takayuki and Balazadeh, Salma and Erban, Alexander and Giavalisco, Patrick and Kopka, Joachim and Mueller-Roeber, Bernd and Fernie, Alisdair R. and Hoefgen, Rainer}, title = {Comprehensive Metabolomics Studies of Plant Developmental Senescence}, series = {Plant Senescence: Methods and Protocols}, volume = {1744}, journal = {Plant Senescence: Methods and Protocols}, publisher = {Humana Press}, address = {Totowa}, isbn = {978-1-4939-7672-0}, issn = {1064-3745}, doi = {10.1007/978-1-4939-7672-0_28}, pages = {339 -- 358}, year = {2018}, abstract = {Leaf senescence is an essential developmental process that involves diverse metabolic changes associated with degradation of macromolecules allowing nutrient recycling and remobilization. In contrast to the significant progress in transcriptomic analysis of leaf senescence, metabolomics analyses have been relatively limited. A broad overview of metabolic changes during leaf senescence including the interactions between various metabolic pathways is required to gain a better understanding of the leaf senescence allowing to link transcriptomics with metabolomics and physiology. In this chapter, we describe how to obtain comprehensive metabolite profiles and how to dissect metabolic shifts during leaf senescence in the model plant Arabidopsis thaliana. Unlike nucleic acid analysis for transcriptomics, a comprehensive metabolite profile can only be achieved by combining a suite of analytic tools. Here, information is provided for measurements of the contents of chlorophyll, soluble proteins, and starch by spectrophotometric methods, ions by ion chromatography, thiols and amino acids by HPLC, primary metabolites by GC/TOF-MS, and secondary metabolites and lipophilic metabolites by LC/ESI-MS. These metabolite profiles provide a rich catalogue of metabolic changes during leaf senescence, which is a helpful database and blueprint to be correlated to future studies such as transcriptome and proteome analyses, forward and reverse genetic studies, or stress-induced senescence studies.}, language = {en} } @article{ThirumalaikumarDevkarMehterovetal.2017, author = {Thirumalaikumar, Venkatesh P. and Devkar, Vikas and Mehterov, Nikolay and Ali, Shawkat and Ozgur, Rengin and Turkan, Ismail and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato}, series = {Plant Biotechnology Journal}, volume = {16}, journal = {Plant Biotechnology Journal}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1467-7644}, doi = {10.1111/pbi.12776}, pages = {354 -- 366}, year = {2017}, abstract = {Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2O2) levels and a decrease in the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato.}, language = {en} } @article{KamranfarXueTohgeetal.2018, author = {Kamranfar, Iman and Xue, Gang-Ping and Tohge, Takayuki and Sedaghatmehr, Mastoureh and Fernie, Alisdair R. and Balazadeh, Salma and Mueller-Roeber, Bernd}, title = {Transcription factor RD26 is a key regulator of metabolic reprogramming during dark-induced senescence}, series = {New phytologist : international journal of plant science}, volume = {218}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.15127}, pages = {1543 -- 1557}, year = {2018}, abstract = {Leaf senescence is a key process in plants that culminates in the degradation of cellular constituents and massive reprogramming of metabolism for the recovery of nutrients from aged leaves for their reuse in newly developing sinks. We used molecular-biological and metabolomics approaches to identify NAC transcription factor (TF) RD26 as an important regulator of metabolic reprogramming in Arabidopsis thaliana. RD26 directly activates CHLOROPLAST VESICULATION (CV), encoding a protein crucial for chloroplast protein degradation, concomitant with an enhanced protein loss in RD26 over-expressors during senescence, but a reduced decline of protein in rd26 knockout mutants. RD26 also directly activates LKR/SDH involved in lysine catabolism, and PES1 important for phytol degradation. Metabolic profiling revealed reduced c-aminobutyric acid (GABA) in RD26 overexpressors, accompanied by the induction of respective catabolic genes. Degradation of lysine, phytol and GABA is instrumental for maintaining mitochondrial respiration in carbon-limiting conditions during senescence. RD26 also supports the degradation of starch and the accumulation of mono-and disaccharides during senescence by directly enhancing the expression of AMY1, SFP1 and SWEET15 involved in carbohydrate metabolism and transport. Collectively, during senescence RD26 acts by controlling the expression of genes across the entire spectrum of the cellular degradation hierarchy.}, language = {en} }