@article{ReegStriglJeltsch2022, author = {Reeg, Jette and Strigl, Lea and Jeltsch, Florian}, title = {Agricultural buffer zone thresholds to safeguard functional bee diversity}, series = {Ecology and Evolution}, volume = {12}, journal = {Ecology and Evolution}, edition = {3}, publisher = {Wiley Online Library}, address = {Hoboken, New Jersey, USA}, issn = {2045-7758}, doi = {10.1002/ece3.8748}, pages = {1 -- 17}, year = {2022}, abstract = {Wild bee species are important pollinators in agricultural landscapes. However, population decline was reported over the last decades and is still ongoing. While agricultural intensification is a major driver of the rapid loss of pollinating species, transition zones between arable fields and forest or grassland patches, i.e., agricultural buffer zones, are frequently mentioned as suitable mitigation measures to support wild bee populations and other pollinator species. Despite the reported general positive effect, it remains unclear which amount of buffer zones is needed to ensure a sustainable and permanent impact for enhancing bee diversity and abundance. To address this question at a pollinator community level, we implemented a process-based, spatially explicit simulation model of functional bee diversity dynamics in an agricultural landscape. More specifically, we introduced a variable amount of agricultural buffer zones (ABZs) at the transition of arable to grassland, or arable to forest patches to analyze the impact on bee functional diversity and functional richness. We focused our study on solitary bees in a typical agricultural area in the Northeast of Germany. Our results showed positive effects with at least 25\% of virtually implemented agricultural buffer zones. However, higher amounts of ABZs of at least 75\% should be considered to ensure a sufficient increase in Shannon diversity and decrease in quasi-extinction risks. These high amounts of ABZs represent effective conservation measures to safeguard the stability of pollination services provided by solitary bee species. As the model structure can be easily adapted to other mobile species in agricultural landscapes, our community approach offers the chance to compare the effectiveness of conservation measures also for other pollinator communities in future.}, language = {en} } @misc{ReegStriglJeltsch2022, author = {Reeg, Jette and Strigl, Lea and Jeltsch, Florian}, title = {Agricultural buffer zone thresholds to safeguard functional bee diversity: Insights from a community modeling approach}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1281}, issn = {1866-8372}, doi = {10.25932/publishup-57080}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570800}, pages = {17}, year = {2022}, abstract = {Wild bee species are important pollinators in agricultural landscapes. However, population decline was reported over the last decades and is still ongoing. While agricultural intensification is a major driver of the rapid loss of pollinating species, transition zones between arable fields and forest or grassland patches, i.e., agricultural buffer zones, are frequently mentioned as suitable mitigation measures to support wild bee populations and other pollinator species. Despite the reported general positive effect, it remains unclear which amount of buffer zones is needed to ensure a sustainable and permanent impact for enhancing bee diversity and abundance. To address this question at a pollinator community level, we implemented a process-based, spatially explicit simulation model of functional bee diversity dynamics in an agricultural landscape. More specifically, we introduced a variable amount of agricultural buffer zones (ABZs) at the transition of arable to grassland, or arable to forest patches to analyze the impact on bee functional diversity and functional richness. We focused our study on solitary bees in a typical agricultural area in the Northeast of Germany. Our results showed positive effects with at least 25\% of virtually implemented agricultural buffer zones. However, higher amounts of ABZs of at least 75\% should be considered to ensure a sufficient increase in Shannon diversity and decrease in quasi-extinction risks. These high amounts of ABZs represent effective conservation measures to safeguard the stability of pollination services provided by solitary bee species. As the model structure can be easily adapted to other mobile species in agricultural landscapes, our community approach offers the chance to compare the effectiveness of conservation measures also for other pollinator communities in future.}, language = {en} } @misc{ReegHeineMihanetal.2020, author = {Reeg, Jette and Heine, Simon and Mihan, Christine and McGee, Sean and Preuss, Thomas G. and Jeltsch, Florian}, title = {Herbicide risk assessments of non-target terrestrial plant communities}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {874}, issn = {1866-8372}, doi = {10.25932/publishup-45999}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459997}, pages = {20}, year = {2020}, abstract = {Plants located adjacent to agricultural fields are important for maintaining biodiversity in semi-natural landscapes. To avoid undesired impacts on these plants due to herbicide application on the arable fields, regulatory risk assessments are conducted prior to registration to ensure proposed uses of plant protection products do not present an unacceptable risk. The current risk assessment approach for these non-target terrestrial plants (NTTPs) examines impacts at the individual-level as a surrogate approach for protecting the plant community due to the inherent difficulties of directly assessing population or community level impacts. However, modelling approaches are suitable higher tier tools to upscale individual-level effects to community level. IBC-grass is a sophisticated plant community model, which has already been applied in several studies. However, as it is a console application software, it was not deemed sufficiently user-friendly for risk managers and assessors to be conveniently operated without prior expertise in ecological models. Here, we present a user-friendly and open source graphical user interface (GUI) for the application of IBC-grass in regulatory herbicide risk assessment. It facilitates the use of the plant community model for predicting long-term impacts of herbicide applications on NTTP communities. The GUI offers two options to integrate herbicide impacts: (1) dose responses based on current standard experiments (acc. to testing guidelines) and (2) based on specific effect intensities. Both options represent suitable higher tier options for future risk assessments of NTTPs as well as for research on the ecological relevance of effects.}, language = {en} } @article{ReegHeineMihanetal.2020, author = {Reeg, Jette and Heine, Simon and Mihan, Christine and McGee, Sean and Preuss, Thomas G. and Jeltsch, Florian}, title = {A graphical user interface for the plant community model IBC-grass}, series = {Plos One}, volume = {15}, journal = {Plos One}, number = {3}, publisher = {Plos 1}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0230012}, pages = {18}, year = {2020}, abstract = {Plants located adjacent to agricultural fields are important for maintaining biodiversity in semi-natural landscapes. To avoid undesired impacts on these plants due to herbicide application on the arable fields, regulatory risk assessments are conducted prior to registration to ensure proposed uses of plant protection products do not present an unacceptable risk. The current risk assessment approach for these non-target terrestrial plants (NTTPs) examines impacts at the individual-level as a surrogate approach for protecting the plant community due to the inherent difficulties of directly assessing population or community level impacts. However, modelling approaches are suitable higher tier tools to upscale individual-level effects to community level. IBC-grass is a sophisticated plant community model, which has already been applied in several studies. However, as it is a console application software, it was not deemed sufficiently user-friendly for risk managers and assessors to be conveniently operated without prior expertise in ecological models. Here, we present a user-friendly and open source graphical user interface (GUI) for the application of IBC-grass in regulatory herbicide risk assessment. It facilitates the use of the plant community model for predicting long-term impacts of herbicide applications on NTTP communities. The GUI offers two options to integrate herbicide impacts: (1) dose responses based on current standard experiments (acc. to testing guidelines) and (2) based on specific effect intensities. Both options represent suitable higher tier options for future risk assessments of NTTPs as well as for research on the ecological relevance of effects.}, language = {en} } @misc{ReegHeineMihanetal.2019, author = {Reeg, Jette and Heine, Simon and Mihan, Christine and McGee, Sean and Preuss, Thomas G. and Jeltsch, Florian}, title = {Simulation of herbicide impacts on a plant community}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {528}, issn = {1866-8372}, doi = {10.25932/publishup-42303}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423039}, pages = {16}, year = {2019}, abstract = {Background Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. Results We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. Conclusion The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.}, language = {en} } @phdthesis{Reeg2019, author = {Reeg, Jette}, title = {Simulating the impact of herbicide drift exposure on non-target terrestrial plant communities}, doi = {10.25932/publishup-42907}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429073}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2019}, abstract = {In Europe, almost half of the terrestrial landscape is used for agriculture. Thus, semi-natural habitats such as field margins are substantial for maintaining diversity in intensively managed farmlands. However, plants located at field margins are threatened by agricultural practices such as the application of pesticides within the fields. Pesticides are chemicals developed to control for undesired species within agricultural fields to enhance yields. The use of pesticides implies, however, effects on non-target organisms within and outside of the agricultural fields. Non-target organisms are organisms not intended to be sprayed or controlled for. For example, plants occurring in field margins are not intended to be sprayed, however, can be impaired due to herbicide drift exposure. The authorization of plant protection products such as herbicides requires risk assessments to ensure that the application of the product has no unacceptable effects on the environment. For non-target terrestrial plants (NTTPs), the risk assessment is based on standardized greenhouse studies on plant individual level. To account for the protection of plant populations and communities under realistic field conditions, i.e. extrapolating from greenhouse studies to field conditions and from individual-level to community-level, assessment factors are applied. However, recent studies question the current risk assessment scheme to meet the specific protection goals for non-target terrestrial plants as suggested by the European Food Safety Authority (EFSA). There is a need to clarify the gaps of the current risk assessment and to include suitable higher tier options in the upcoming guidance document for non-target terrestrial plants. In my thesis, I studied the impact of herbicide drift exposure on NTTP communities using a mechanistic modelling approach. I addressed main gaps and uncertainties of the current risk assessment and finally suggested this modelling approach as a novel higher tier option in future risk assessments. Specifically, I extended the plant community model IBC-grass (Individual-based community model for grasslands) to reflect herbicide impacts on plant individuals. In the first study, I compared model predictions of short-term herbicide impacts on artificial plant communities with empirical data. I demonstrated the capability of the model to realistically reflect herbicide impacts. In the second study, I addressed the research question whether or not reproductive endpoints need to be included in future risk assessments to protect plant populations and communities. I compared the consequences of theoretical herbicide impacts on different plant attributes for long-term plant population dynamics in the community context. I concluded that reproductive endpoints only need to be considered if the herbicide effect is assumed to be very high. The endpoints measured in the current vegetative vigour and seedling emergence studies had high impacts for the dynamic of plant populations and communities already at lower effect intensities. Finally, the third study analysed long-term impacts of herbicide application for three different plant communities. This study highlighted the suitability of the modelling approach to simulate different communities and thus detecting sensitive environmental conditions. Overall, my thesis demonstrates the suitability of mechanistic modelling approaches to be used as higher tier options for risk assessments. Specifically, IBC-grass can incorporate available individual-level effect data of standardized greenhouse experiments to extrapolate to community-level under various environmental conditions. Thus, future risk assessments can be improved by detecting sensitive scenarios and including worst-case impacts on non-target plant communities.}, language = {en} } @misc{JeltschGrimmReegetal.2019, author = {Jeltsch, Florian and Grimm, Volker and Reeg, Jette and Schl{\"a}gel, Ulrike E.}, title = {Give chance a chance}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {742}, issn = {1866-8372}, doi = {10.25932/publishup-43532}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435320}, pages = {19}, year = {2019}, abstract = {A large part of biodiversity theory is driven by the basic question of what allows species to coexist in spite of a confined number of niches. A substantial theoretical background to this question is provided by modern coexistence theory (MCT), which rests on mathematical approaches of invasion analysis to categorize underlying mechanisms into factors that reduce either niche overlap (stabilizing mechanisms) or the average fitness differences of species (equalizing mechanisms). While MCT has inspired biodiversity theory in the search for these underlying mechanisms, we feel that the strong focus on coexistence causes a bias toward the most abundant species and neglects the plethora of species that are less abundant and often show high local turnover. Given the more stochastic nature of their occurrence, we advocate a complementary cross-level approach that links individuals, small populations, and communities and explicitly takes into account (1) a more complete inclusion of environmental and demographic stochasticity affecting small populations, (2) intraspecific trait variation and behavioral plasticity, and (3) local heterogeneities, interactions, and feedbacks. Focusing on mechanisms that drive the temporary coviability of species rather than infinite coexistence, we suggest a new approach that could be dubbed coviability analysis (CVA). From a modeling perspective, CVA builds on the merged approaches of individual-based modeling and population viability analysis but extends them to the community level. From an empirical viewpoint, CVA calls for a stronger integration of spatiotemporal data on variability and noise, changing drivers, and interactions at the level of individuals. The resulting large volumes of data from multiple sources could be strongly supported by novel techniques tailored to the discovery of complex patterns in high-dimensional data. By complementing MCT through a stronger focus on the coviability of less common species, this approach can help make modern biodiversity theory more comprehensive, predictive, and relevant for applications.}, language = {en} } @article{JeltschGrimmReegetal.2019, author = {Jeltsch, Florian and Grimm, Volker and Reeg, Jette and Schl{\"a}gel, Ulrike E.}, title = {Give chance a chance}, series = {Ecosphere}, volume = {10}, journal = {Ecosphere}, number = {5}, publisher = {ESA}, address = {Ithaca, NY}, issn = {2150-8925}, doi = {10.1002/ecs2.2700}, pages = {19}, year = {2019}, abstract = {A large part of biodiversity theory is driven by the basic question of what allows species to coexist in spite of a confined number of niches. A substantial theoretical background to this question is provided by modern coexistence theory (MCT), which rests on mathematical approaches of invasion analysis to categorize underlying mechanisms into factors that reduce either niche overlap (stabilizing mechanisms) or the average fitness differences of species (equalizing mechanisms). While MCT has inspired biodiversity theory in the search for these underlying mechanisms, we feel that the strong focus on coexistence causes a bias toward the most abundant species and neglects the plethora of species that are less abundant and often show high local turnover. Given the more stochastic nature of their occurrence, we advocate a complementary cross-level approach that links individuals, small populations, and communities and explicitly takes into account (1) a more complete inclusion of environmental and demographic stochasticity affecting small populations, (2) intraspecific trait variation and behavioral plasticity, and (3) local heterogeneities, interactions, and feedbacks. Focusing on mechanisms that drive the temporary coviability of species rather than infinite coexistence, we suggest a new approach that could be dubbed coviability analysis (CVA). From a modeling perspective, CVA builds on the merged approaches of individual-based modeling and population viability analysis but extends them to the community level. From an empirical viewpoint, CVA calls for a stronger integration of spatiotemporal data on variability and noise, changing drivers, and interactions at the level of individuals. The resulting large volumes of data from multiple sources could be strongly supported by novel techniques tailored to the discovery of complex patterns in high-dimensional data. By complementing MCT through a stronger focus on the coviability of less common species, this approach can help make modern biodiversity theory more comprehensive, predictive, and relevant for applications.}, language = {en} } @article{ReegHeineMihanetal.2018, author = {Reeg, Jette and Heine, Simon and Mihan, Christine and Preuss, Thomas G. and McGee, Sean and Jeltsch, Florian}, title = {Potential impact of effects on reproductive attributes induced by herbicides on a plant community}, series = {Environmental Toxicology and Chemistry}, volume = {37}, journal = {Environmental Toxicology and Chemistry}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0730-7268}, doi = {10.1002/etc.4122}, pages = {1707 -- 1722}, year = {2018}, abstract = {Current herbicide risk assessment guidelines for nontarget terrestrial plants require testing effects on young, vulnerable life stages (i.e., seedling emergence [and subsequent growth] and vegetative vigor [growth and dry wt]) but not directly on the reproduction of plants. However, the European Food Safety Authority (EFSA) has proposed that effects on reproduction might be considered when evaluating the potential effects on plants. We adapted the plant community model for grassland (IBC-grass) to give insight into the current debate on the sensitivity of reproductive versus vegetative endpoints in ecological risk assessment. In an extensive sensitivity analysis of this model, we compared plant attributes potentially affected by herbicides and the consequences for long-term plant population dynamics and plant diversity. This evaluation was implemented by reducing reproductive as well as vegetative endpoints by certain percentages (e.g., 10-90\%) as a theoretical assumption. Plant mortality and seed sterility (i.e., inability of seeds to germinate) were the most sensitive attributes. Our results indicated that effects on seed production at off-field exposure rates must be very strong to have an impact on the risk assessment. Otherwise, effects on seed production are compensated for by the soil seed bank. The present study highlights the usefulness of community level modeling studies to support regulators in their decisions on the appropriate risk assessment endpoints and provides confidence in their assessments. Environ Toxicol Chem 2018;37:1707-1722. (c) 2018 SETAC}, language = {en} } @article{ReegHeineMihanetal.2018, author = {Reeg, Jette and Heine, Simon and Mihan, Christine and McGee, Sean and Preuss, Thomas G. and Jeltsch, Florian}, title = {Simulation of herbicide impacts on a plant community}, series = {Environmental Sciences Europe}, volume = {30}, journal = {Environmental Sciences Europe}, number = {44}, publisher = {Springer}, address = {Berlin und Heidelberg}, issn = {2190-4715}, doi = {10.1186/s12302-018-0174-9}, pages = {16}, year = {2018}, abstract = {Background Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. Results We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. Conclusion The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.}, language = {en} }