@article{KhuranaHesseHildebrandtetal.2022, author = {Khurana, Swamini and Heße, Falk and Hildebrandt, Anke and Thullner, Martin}, title = {Predicting the impact of spatial heterogeneity on microbially mediated nutrient cycling in the subsurface}, series = {Biogeosciences}, volume = {19}, journal = {Biogeosciences}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-19-665-2022}, pages = {665 -- 688}, year = {2022}, abstract = {The subsurface is a temporally dynamic and spatially heterogeneous compartment of the Earth's critical zone, and biogeochemical transformations taking place in this compartment are crucial for the cycling of nutrients. The impact of spatial heterogeneity on such microbially mediated nutrient cycling is not well known, which imposes a severe challenge in the prediction of in situ biogeochemical transformation rates and further of nutrient loading contributed by the groundwater to the surface water bodies. Therefore, we used a numerical modelling approach to evaluate the sensitivity of groundwater microbial biomass distribution and nutrient cycling to spatial heterogeneity in different scenarios accounting for various residence times. The model results gave us an insight into domain characteristics with respect to the presence of oxic niches in predominantly anoxic zones and vice versa depending on the extent of spatial heterogeneity and the flow regime. The obtained results show that microbial abundance, distribution, and activity are sensitive to the applied flow regime and that the mobile (i.e. observable by groundwater sampling) fraction of microbial biomass is a varying, yet only a small, fraction of the total biomass in a domain. Furthermore, spatial heterogeneity resulted in anaerobic niches in the domain and shifts in microbial biomass between active and inactive states. The lack of consideration of spatial heterogeneity, thus, can result in inaccurate estimation of microbial activity. In most cases this leads to an overestimation of nutrient removal (up to twice the actual amount) along a flow path. We conclude that the governing factors for evaluating this are the residence time of solutes and the Damkohler number (Da) of the biogeochemical reactions in the domain. We propose a relationship to scale the impact of spatial heterogeneity on nutrient removal governed by the logioDa. This relationship may be applied in upscaled descriptions of microbially mediated nutrient cycling dynamics in the subsurface thereby resulting in more accurate predictions of, for example, carbon and nitrogen cycling in groundwater over long periods at the catchment scale.}, language = {en} } @article{ZimmermannVossMetzgeretal.2016, author = {Zimmermann, Alexander and Voss, Sebastian and Metzger, Johanna Clara and Hildebrandt, Anke and Zimmermann, Beate}, title = {estimating mean throughfall}, series = {Journal of hydrology}, volume = {542}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2016.09.047}, pages = {781 -- 789}, year = {2016}, abstract = {The selection of an appropriate spatial extent of a sampling plot is one among several important decisions involved in planning a throughfall sampling scheme. In fact, the choice of the extent may determine whether or not a study can adequately characterize the hydrological fluxes of the studied ecosystem. Previous attempts to optimize throughfall sampling schemes focused on the selection of an appropriate sample size, support, and sampling design, while comparatively little attention has been given to the role of the extent. In this contribution, we investigated the influence of the extent on the representativeness of mean throughfall estimates for three forest ecosystems of varying stand structure. Our study is based on virtual sampling of simulated throughfall fields. We derived these fields from throughfall data sampled in a simply structured forest (young tropical forest) and two heterogeneous forests (old tropical forest, unmanaged mixed European beech forest). We then sampled the simulated throughfall fields with three common extents and various sample sizes for a range of events and for accumulated data. Our findings suggest that the size of the study area should be carefully adapted to the complexity of the system under study and to the required temporal resolution of the throughfall data (i.e. event-based versus accumulated). Generally, event-based sampling in complex structured forests (conditions that favor comparatively long autocorrelations in throughfall) requires the largest extents. For event-based sampling, the choice of an appropriate extent can be as important as using an adequate sample size. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{MuellervanSchaikBlumeetal.2014, author = {M{\"u}ller, Eva Nora and van Schaik, Loes and Blume, Theresa and Bronstert, Axel and Carus, Jana and Fleckenstein, Jan H. and Fohrer, Nicola and Geissler, Katja and Gerke, Horst H. and Gr{\"a}ff, Thomas and Hesse, Cornelia and Hildebrandt, Anke and H{\"o}lker, Franz and Hunke, Philip and K{\"o}rner, Katrin and Lewandowski, J{\"o}rg and Lohmann, Dirk and Meinikmann, Karin and Schibalski, Anett and Schmalz, Britta and Schr{\"o}der-Esselbach, Boris and Tietjen, Britta}, title = {Scales, key aspects, feedbacks and challenges of ecohydrological research in Germany}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {58}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {4}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2014,4_2}, pages = {221 -- 240}, year = {2014}, abstract = {Ecohydrology analyses the interactions of biotic and abiotic aspects of our ecosystems and landscapes. It is a highly diverse discipline in terms of its thematic and methodical research foci. This article gives an overview of current German ecohydrological research approaches within plant-animal-soil-systems, meso-scale catchments and their river networks, lake systems, coastal areas and tidal rivers. It discusses their relevant spatial and temporal process scales and different types of interactions and feedback dynamics between hydrological and biotic processes and patterns. The following topics are considered key challenges: innovative analysis of the interdisciplinary scale continuum, development of dynamically coupled model systems, integrated monitoring of coupled processes at the interface and transition from basic to applied ecohydrological science to develop sustainable water and land resource management strategies under regional and global change.}, language = {de} } @article{CarminatiSchneiderMoradietal.2011, author = {Carminati, Andrea and Schneider, Christoph L. and Moradi, Ahmad B. and Zarebanadkouki, Mohsen and Vetterlein, Doris and Vogel, Hans-J{\"o}rg and Hildebrandt, Anke and Weller, Ulrich and Sch{\"u}ler, Lennart and Oswald, Sascha}, title = {How the rhizosphere may favor water availability to roots}, series = {Vadose zone journal}, volume = {10}, journal = {Vadose zone journal}, number = {3}, publisher = {Soil Science Society of America}, address = {Madison}, issn = {1539-1663}, doi = {10.2136/vzj2010.0113}, pages = {988 -- 998}, year = {2011}, abstract = {Recent studies have shown that rhizosphere hydraulic properties may differ from those of the bulk soil. Specifically, mucilage at the root-soil interface may increase the rhizosphere water holding capacity and hydraulic conductivity during drying. The goal of this study was to point out the implications of such altered rhizosphere hydraulic properties for soil-plant water relations. We addressed this problem through modeling based on a steady-rate approach. We calculated the water flow toward a single root assuming that the rhizosphere and bulk soil were two concentric cylinders having different hydraulic properties. Based on our previous experimental results, we assumed that the rhizosphere had higher water holding capacity and unsaturated conductivity than the bulk soil. The results showed that the water potential gradients in the rhizosphere were much smaller than in the bulk soil. The consequence is that the rhizosphere attenuated and delayed the drop in water potential in the vicinity of the root surface when the soil dried. This led to increased water availability to plants, as well as to higher effective conductivity under unsaturated conditions. The reasons were two: (i) thanks to the high unsaturated conductivity of the rhizosphere, the radius of water uptake was extended from the root to the rhizosphere surface; and (ii) thanks to the high soil water capacity of the rhizosphere, the water depletion in the bulk soil was compensated by water depletion in the rhizosphere. We conclude that under the assumed conditions, the rhizosphere works as an optimal hydraulic conductor and as a reservoir of water that can be taken up when water in the bulk soil becomes limiting.}, language = {en} }