@article{AwaisAhmadKhanetal.2018, author = {Awais, Muhammad and Ahmad, Rafiq and Khan, Nadeem and Garapati, Prashanth and Shahzad, Muhammad and Afroz, Amber and Rashid, Umer and Khan, Sabaz Ali}, title = {Transformation of tomato variety rio grande with drought resistant transcription factor gene ATAF1 and its molecular analysis}, series = {Pakistan Journal of Botany}, volume = {50}, journal = {Pakistan Journal of Botany}, number = {5}, publisher = {Pakistan botanic soc}, address = {Karachi}, issn = {0556-3321}, pages = {1811 -- 1820}, year = {2018}, abstract = {Tomato (Solanum lycopersicum L.) being an important vegetable is cultivated and used throughout the world. It not only contributes in fulfilling the basic nutritional requirements of the human body but also has many health benefits due to its rich biochemical composition. However, its production at large scale is hampered by many limiting factors such as biotic and abiotic stresses. Among the different abiotic stresses, drought poses drastic impact on tomato yield. Drought stress is genetically regulated by many transcription factors that not only regulate the stress responsive mechanism but also facilitate the growth and development of tomato plants. NAC is an important stress related transcription factor genes family, and the ATAF1 gene, a member of this family, is involved in ABA signaling and stress response. In this study, tomato variety Rio Drande was transformed with drought resistant ATAF1 gene via Agrobacterium mediated gene transformation method. The ATAF1 gene was first cloned in the pK7WFG2 vector having kanamycin selectable marker and then it was introduced in the Agrobacterium tumefaciens strain GV3101 through heat shock method. The tomato cotyledon and hypocotyl ex-plants of variety "Rio Ggrande" were cultured on callus induction medium (MS + 2.5 mg/L IAA + 2 mg/L BAP). The calli were then infected with Agrobacterium tumefaciens strain GV3101 containing ATAF1 gene and selection was carried out on the kanamycin selectable medium (MS + 100 mg/L Kan), and were regenerated on MS medium with 1 mg/L IAA + 1 mg/L BAP. Out of 216 putative transformed calli, 13 calli were able to regenerate on the selection medium. Of the 13 calli, three transgenic tomato plantlets were recovered, and these were confirmed through PCR analysis for the presence of 432 bp fragment of ATAF1 gene. The transformation protocol reported here can be used to generate drought resistant tomato plants in future.}, language = {en} } @article{GarapatiXueMunneBoschetal.2015, author = {Garapati, Prashanth and Xue, Gang-Ping and Munne-Bosch, Sergi and Balazadeh, Salma}, title = {Transcription Factor ATAF1 in Arabidopsis Promotes Senescence by Direct Regulation of Key Chloroplast Maintenance and Senescence Transcriptional Cascades}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {168}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.15.00567}, pages = {1122 -- +}, year = {2015}, abstract = {Senescence represents a fundamental process of late leaf development. Transcription factors (TFs) play an important role for expression reprogramming during senescence; however, the gene regulatory networks through which they exert their functions, and their physiological integration, are still largely unknown. Here, we identify the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)- and hydrogen peroxide-activated TF Arabidopsis thaliana ACTIVATING FACTOR1 (ATAF1) as a novel upstream regulator of senescence. ATAF1 executes its physiological role by affecting both key chloroplast maintenance and senescence-promoting TFs, namely GOLDEN2-LIKE1 (GLK1) and ORESARA1 (ARABIDOPSIS NAC092), respectively. Notably, while ATAF1 activates ORESARA1, it represses GLK1 expression by directly binding to their promoters, thereby generating a transcriptional output that shifts the physiological balance toward the progression of senescence. We furthermore demonstrate a key role of ATAF1 for ABA- and hydrogen peroxide-induced senescence, in accordance with a direct regulatory effect on ABA homeostasis genes, including NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 involved in ABA biosynthesis and ABC TRANSPORTER G FAMILY MEMBER40, encoding an ABA transport protein. Thus, ATAF1 serves as a core transcriptional activator of senescence by coupling stress-related signaling with photosynthesis- and senescence-related transcriptional cascades.}, language = {en} } @article{GarapatiFeilLunnetal.2015, author = {Garapati, Prashanth and Feil, Regina and Lunn, John Edward and Van Dijck, Patrick and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd}, title = {Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {169}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {1}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.15.00917}, pages = {379 -- 390}, year = {2015}, abstract = {Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis-and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1.}, language = {en} } @phdthesis{Garapati2013, author = {Garapati, Prashanth}, title = {Functional characterization of H2=2-responsive NAC transcription factors ATAF1 and JUB1 in Arabidopsis thaliana}, address = {Potsdam}, pages = {177, V S.}, year = {2013}, language = {en} } @article{WuAlluGarapatietal.2012, author = {Wu, Anhui and Allu, Annapurna Devi and Garapati, Prashanth and Siddiqui, Hamad and Dortay, Hakan and Zanor, Maria-Ines and Asensi-Fabado, Maria Amparo and Munne-Bosch, Sergi and Antonio, Carla and Tohge, Takayuki and Fernie, Alisdair R. and Kaufmann, Kerstin and Xue, Gang-Ping and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {Jungbrunnen1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in arabidopsis}, series = {The plant cell}, volume = {24}, journal = {The plant cell}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.111.090894}, pages = {482 -- 506}, year = {2012}, abstract = {The transition from juvenility through maturation to senescence is a complex process that involves the regulation of longevity. Here, we identify JUNGBRUNNEN1 (JUB1), a hydrogen peroxide (H2O2)-induced NAC transcription factor, as a central longevity regulator in Arabidopsis thaliana. JUB1 overexpression strongly delays senescence, dampens intracellular H2O2 levels, and enhances tolerance to various abiotic stresses, whereas in jub1-1 knockdown plants, precocious senescence and lowered abiotic stress tolerance are observed. A JUB1 binding site containing a RRYGCCGT core sequence is present in the promoter of DREB2A, which plays an important role in abiotic stress responses. JUB1 transactivates DREB2A expression in mesophyll cell protoplasts and transgenic plants and binds directly to the DREB2A promoter. Transcriptome profiling of JUB1 overexpressors revealed elevated expression of several reactive oxygen species-responsive genes, including heat shock protein and glutathione S-transferase genes, whose expression is further induced by H2O2 treatment. Metabolite profiling identified elevated Pro and trehalose levels in JUB1 overexpressors, in accordance with their enhanced abiotic stress tolerance. We suggest that JUB1 constitutes a central regulator of a finely tuned control system that modulates cellular H2O2 level and primes the plants for upcoming stress through a gene regulatory network that involves DREB2A.}, language = {en} }