@article{HuebenerMariEisert2013, author = {Huebener, R. and Mari, Andrea and Eisert, Jens}, title = {Wick's theorem for matrix product states}, series = {Physical review letters}, volume = {110}, journal = {Physical review letters}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.110.040401}, pages = {5}, year = {2013}, abstract = {Matrix product states and their continuous analogues are variational classes of states that capture quantum many-body systems or quantum fields with low entanglement; they are at the basis of the density-matrix renormalization group method and continuous variants thereof. In this work we show that, generically, N-point functions of arbitrary operators in discrete and continuous translation invariant matrix product states are completely characterized by the corresponding two- and three-point functions. Aside from having important consequences for the structure of correlations in quantum states with low entanglement, this result provides a new way of reconstructing unknown states from correlation measurements, e. g., for one-dimensional continuous systems of cold atoms. We argue that such a relation of correlation functions may help in devising perturbative approaches to interacting theories.}, language = {en} } @article{RieraGogolinEisert2012, author = {Riera, Arnau and Gogolin, Christian and Eisert, Jens}, title = {Thermalization in nature and on a quantum computer}, series = {Physical review letters}, volume = {108}, journal = {Physical review letters}, number = {8}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.108.080402}, pages = {5}, year = {2012}, abstract = {In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for physically relevant weak system-bath couplings that is applicable even in the thermodynamic limit. We identify conditions under which thermalization happens and discuss the underlying physics. Based on these results, we also present a fully general quantum algorithm for preparing Gibbs states on a quantum computer with a certified runtime and error bound. This complements quantum Metropolis algorithms, which are expected to be efficient but have no known runtime estimates and only work for local Hamiltonians.}, language = {en} } @article{CubittEisertWolf2012, author = {Cubitt, Toby S. and Eisert, Jens and Wolf, Michael M.}, title = {The complexity of relating quantum channels to master equations}, series = {Communications in mathematical physics}, volume = {310}, journal = {Communications in mathematical physics}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0010-3616}, doi = {10.1007/s00220-011-1402-y}, pages = {383 -- 418}, year = {2012}, abstract = {Completely positive, trace preserving (CPT) maps and Lindblad master equations are both widely used to describe the dynamics of open quantum systems. The connection between these two descriptions is a classic topic in mathematical physics. One direction was solved by the now famous result due to Lindblad, Kossakowski, Gorini and Sudarshan, who gave a complete characterisation of the master equations that generate completely positive semi-groups. However, the other direction has remained open: given a CPT map, is there a Lindblad master equation that generates it (and if so, can we find its form)? This is sometimes known as the Markovianity problem. Physically, it is asking how one can deduce underlying physical processes from experimental observations. We give a complexity theoretic answer to this problem: it is NP-hard. We also give an explicit algorithm that reduces the problem to integer semi-definite programming, a well-known NP problem. Together, these results imply that resolving the question of which CPT maps can be generated by master equations is tantamount to solving P = NP: any efficiently computable criterion for Markovianity would imply P = NP; whereas a proof that P = NP would imply that our algorithm already gives an efficiently computable criterion. Thus, unless P does equal NP, there cannot exist any simple criterion for determining when a CPT map has a master equation description. However, we also show that if the system dimension is fixed (relevant for current quantum process tomography experiments), then our algorithm scales efficiently in the required precision, allowing an underlying Lindblad master equation to be determined efficiently from even a single snapshot in this case. Our work also leads to similar complexity-theoretic answers to a related long-standing open problem in probability theory.}, language = {en} } @article{MariEisert2012, author = {Mari, Andrea and Eisert, Jens}, title = {Positive wigner functions render classical simulation of quantum computation efficient}, series = {Physical review letters}, volume = {109}, journal = {Physical review letters}, number = {23}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.109.230503}, pages = {5}, year = {2012}, abstract = {We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.}, language = {en} } @article{CampbellEisert2012, author = {Campbell, Earl T. and Eisert, Jens}, title = {Gaussification and entanglement distillation of continuous-variable systems a unifying picture}, series = {Physical review letters}, volume = {108}, journal = {Physical review letters}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.108.020501}, pages = {5}, year = {2012}, abstract = {Distillation of entanglement using only Gaussian operations is an important primitive in quantum communication, quantum repeater architectures, and distributed quantum computing. Existing distillation protocols for continuous degrees of freedom are only known to converge to a Gaussian state when measurements yield precisely the vacuum outcome. In sharp contrast, non-Gaussian states can be deterministically converted into Gaussian states while preserving their second moments, albeit by usually reducing their degree of entanglement. In this work-based on a novel instance of a noncommutative central limit theorem-we introduce a picture general enough to encompass the known protocols leading to Gaussian states, and new classes of protocols including multipartite distillation. This gives the experimental option of balancing the merits of success probability against entanglement produced.}, language = {en} } @article{BrandaoEisertHorodeckietal.2011, author = {Brandao, F. G. S. L. and Eisert, Jens and Horodecki, M. and Yang, Dong}, title = {Entangled inputs cannot make imperfect quantum channels perfect}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {23}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.230502}, pages = {4}, year = {2011}, abstract = {Entangled inputs can enhance the capacity of quantum channels, this being one of the consequences of the celebrated result showing the nonadditivity of several quantities relevant for quantum information science. In this work, we answer the converse question (whether entangled inputs can ever render noisy quantum channels to have maximum capacity) to the negative: No sophisticated entangled input of any quantum channel can ever enhance the capacity to the maximum possible value, a result that holds true for all channels both for the classical as well as the quantum capacity. This result can hence be seen as a bound as to how "nonadditive quantum information can be.'' As a main result, we find first practical and remarkably simple computable single-shot bounds to capacities, related to entanglement measures. As examples, we discuss the qubit amplitude damping and identify the first meaningful bound for its classical capacity.}, language = {en} } @article{DiGuglielmoSamblowskiHageetal.2011, author = {DiGuglielmo, J. and Samblowski, A. and Hage, B. and Pineda, Carlos and Eisert, Jens and Schnabel, R.}, title = {Experimental Unconditional Preparation and Detection of a Continuous Bound Entangled State of Light}, series = {Physical review letters}, volume = {107}, journal = {Physical review letters}, number = {24}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.107.240503}, pages = {5}, year = {2011}, abstract = {Among the possibly most intriguing aspects of quantum entanglement is that it comes in free and bound instances. The existence of bound entangled states certifies an intrinsic irreversibility of entanglement in nature and suggests a connection with thermodynamics. In this Letter, we present a first unconditional, continuous-variable preparation and detection of a bound entangled state of light. We use convex optimization to identify regimes rendering its bound character well certifiable, and continuously produce a distributed bound entangled state with an extraordinary and unprecedented significance of more than 10 standard deviations away from both separability and distillability. Our results show that the approach chosen allows for the efficient and precise preparation of multimode entangled states of light with various applications in quantum information, quantum state engineering, and high precision metrology.}, language = {en} } @article{MuellerGrossEisert2011, author = {M{\"u}ller, Markus P. and Gross, David and Eisert, Jens}, title = {Concentration of Measure for Quantum States with a Fixed Expectation Value}, series = {Communications in mathematical physics}, volume = {303}, journal = {Communications in mathematical physics}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0010-3616}, doi = {10.1007/s00220-011-1205-1}, pages = {785 -- 824}, year = {2011}, abstract = {Given some observable H on a finite-dimensional quantum system, we investigate the typical properties of random state vectors vertical bar psi >> that have a fixed expectation value < psi vertical bar H vertical bar psi > = E with respect to H. Under some conditions on the spectrum, we prove that this manifold of quantum states shows a concentration of measure phenomenon: any continuous function on this set is almost everywhere close to its mean. We also give a method to estimate the corresponding expectation values analytically, and we prove a formula for the typical reduced density matrix in the case that H is a sum of local observables. We discuss the implications of our results as new proof tools in quantum information theory and to study phenomena in quantum statistical mechanics. As a by-product, we derive a method to sample the resulting distribution numerically, which generalizes the well-known Gaussian method to draw random states from the sphere.}, language = {en} } @article{SchuchHarrisonOsborneetal.2011, author = {Schuch, Norbert and Harrison, Sarah K. and Osborne, Tobias J. and Eisert, Jens}, title = {Information propagation for interacting-particle systems}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {84}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {1050-2947}, doi = {10.1103/PhysRevA.84.032309}, pages = {5}, year = {2011}, abstract = {We study the speed at which information propagates through systems of interacting quantum particles moving on a regular lattice and show that for a certain class of initial conditions there exists a maximum speed of sound at which information can propagate. Our argument applies equally to quantum spins, bosons such as in the Bose-Hubbard model, fermions, anyons, and general mixtures thereof, on arbitrary lattices of any dimension. It also pertains to dissipative dynamics on the lattice, and generalizes to the continuum for quantum fields. Our result can be seen as an analog of the Lieb-Robinson bound for strongly correlated models.}, language = {en} } @article{HuebenerKruszynskaHartmannetal.2011, author = {H{\"u}bener, Robert and Kruszynska, Caroline and Hartmann, Lorenz and Duer, Wolfgang and Plenio, Martin B. and Eisert, Jens}, title = {Tensor network methods with graph enhancement}, series = {Physical review : B, Condensed matter and materials physics}, volume = {84}, journal = {Physical review : B, Condensed matter and materials physics}, number = {12}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.84.125103}, pages = {24}, year = {2011}, abstract = {We present applications of the renormalization algorithm with graph enhancement (RAGE). This analysis extends the algorithms and applications given for approaches based on matrix product states introduced in [Phys. Rev. A 79, 022317 (2009)] to other tensor-network states such as the tensor tree states (TTS) and projected entangled pair states. We investigate the suitability of the bare TTS to describe ground states, showing that the description of certain graph states and condensed-matter models improves. We investigate graph-enhanced tensor-network states, demonstrating that in some cases (disturbed graph states and for certain quantum circuits) the combination of weighted graph states with TTS can greatly improve the accuracy of the description of ground states and time-evolved states. We comment on delineating the boundary of the classically efficiently simulatable states of quantum many-body systems.}, language = {en} }