@article{DuanZhouJiangetal.2021, author = {Duan, Hongbo and Zhou, Sheng and Jiang, Kejun and Bertram, Christoph and Harmsen, Mathijs and Kriegler, Elmar and van Vuuren, Detlef P. and Wang, Shouyang and Fujimori, Shinichiro and Tavoni, Massimo and Ming, Xi and Keramidas, Kimon and Iyer, Gokul and Edmonds, James}, title = {Assessing China's efforts to pursue the 1.5°C warming limit}, series = {Science}, volume = {372}, journal = {Science}, number = {6540}, publisher = {American Association for the Advancement of Science}, address = {Washington, DC}, issn = {1095-9203}, doi = {10.1126/science.aba8767}, pages = {378 -- 385}, year = {2021}, abstract = {Given the increasing interest in keeping global warming below 1.5°C, a key question is what this would mean for China's emission pathway, energy restructuring, and decarbonization. By conducting a multimodel study, we find that the 1.5°C-consistent goal would require China to reduce its carbon emissions and energy consumption by more than 90 and 39\%, respectively, compared with the "no policy" case. Negative emission technologies play an important role in achieving near-zero emissions, with captured carbon accounting on average for 20\% of the total reductions in 2050. Our multimodel comparisons reveal large differences in necessary emission reductions across sectors, whereas what is consistent is that the power sector is required to achieve full decarbonization by 2050. The cross-model averages indicate that China's accumulated policy costs may amount to 2.8 to 5.7\% of its gross domestic product by 2050, given the 1.5°C warming limit.}, language = {en} }