@article{RottlerVormoorFranckeetal.2021, author = {Rottler, Erwin and Vormoor, Klaus Josef and Francke, Till and Warscher, Michael and Strasser, Ulrich and Bronstert, Axel}, title = {Elevation-dependent compensation effects in snowmelt in the Rhine River Basin upstream gauge Basel}, series = {Hydrology research : an international journal / Nordic Association of Hydrology ; British Hydrological Society}, volume = {52}, journal = {Hydrology research : an international journal / Nordic Association of Hydrology ; British Hydrological Society}, number = {2}, publisher = {IWA Publ.}, address = {London}, issn = {2224-7955}, doi = {10.2166/nh.2021.092}, pages = {536 -- 557}, year = {2021}, abstract = {In snow-dominated river basins, floods often occur during early summer, when snowmelt-induced runoff superimposes with rainfall-induced runoff. An earlier onset of seasonal snowmelt as a consequence of a warming climate is often expected to shift snowmelt contribution to river runoff and potential flooding to an earlier date. Against this background, we assess the impact of rising temperatures on seasonal snowpacks and quantify changes in timing, magnitude and elevation of snowmelt. We analyse in situ snow measurements, conduct snow simulations and examine changes in river runoff at key gauging stations. With regard to snowmelt, we detect a threefold effect of rising temperatures: snowmelt becomes weaker, occurs earlier and forms at higher elevations. Due to the wide range of elevations in the catchment, snowmelt does not occur simultaneously at all elevations. Results indicate that elevation bands melt together in blocks. We hypothesise that in a warmer world with similar sequences of weather conditions, snowmelt is moved upward to higher elevation. The movement upward the elevation range makes snowmelt in individual elevation bands occur earlier, although the timing of the snowmelt-induced runoff stays the same. Meltwater from higher elevations, at least partly, replaces meltwater from elevations below.}, language = {en} } @article{SeleemHeistermannBronstert2021, author = {Seleem, Omar and Heistermann, Maik and Bronstert, Axel}, title = {Efficient Hazard Assessment For Pluvial Floods In Urban Environments}, series = {Water}, volume = {13}, journal = {Water}, number = {18}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w13182476}, pages = {17}, year = {2021}, abstract = {The presence of impermeable surfaces in urban areas hinders natural drainage and directs the surface runoff to storm drainage systems with finite capacity, which makes these areas prone to pluvial flooding. The occurrence of pluvial flooding depends on the existence of minimal areas for surface runoff generation and concentration. Detailed hydrologic and hydrodynamic simulations are computationally expensive and require intensive resources. This study compared and evaluated the performance of two simplified methods to identify urban pluvial flood-prone areas, namely the fill-spill-merge (FSM) method and the topographic wetness index (TWI) method and used the TELEMAC-2D hydrodynamic numerical model for benchmarking and validation. The FSM method uses common GIS operations to identify flood-prone depressions from a high-resolution digital elevation model (DEM). The TWI method employs the maximum likelihood method (MLE) to probabilistically calibrate a TWI threshold (τ) based on the inundation maps from a 2D hydrodynamic model for a given spatial window (W) within the urban area. We found that the FSM method clearly outperforms the TWI method both conceptually and effectively in terms of model performance.}, language = {en} } @article{BronstertBuergerPfister2021, author = {Bronstert, Axel and B{\"u}rger, Gerhard and Pfister, Angela}, title = {Vorhersage und Projektion von Sturzfluten - Vorwort}, series = {Hydrologie und Wasserbewirtschaftung : HyWa = Hydrology and water resources management, Germany / Hrsg.: Fachverwaltungen des Bundes und der L{\"a}nder}, volume = {65}, journal = {Hydrologie und Wasserbewirtschaftung : HyWa = Hydrology and water resources management, Germany / Hrsg.: Fachverwaltungen des Bundes und der L{\"a}nder}, number = {6}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde, BfG}, address = {Koblenz}, issn = {1439-1783}, pages = {260 -- 261}, year = {2021}, language = {de} } @article{VogelPatonAichetal.2021, author = {Vogel, Johannes and Paton, Eva and Aich, Valentin and Bronstert, Axel}, title = {Increasing compound warm spells and droughts in the Mediterranean Basin}, series = {Weather and climate extremes}, volume = {32}, journal = {Weather and climate extremes}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-0947}, doi = {10.1016/j.wace.2021.100312}, pages = {14}, year = {2021}, abstract = {The co-occurrence of warm spells and droughts can lead to detrimental socio-economic and ecological impacts, largely surpassing the impacts of either warm spells or droughts alone. We quantify changes in the number of compound warm spells and droughts from 1979 to 2018 in the Mediterranean Basin using the ERA5 data set. We analyse two types of compound events: 1) warm season compound events, which are extreme in absolute terms in the warm season from May to October and 2) year-round deseasonalised compound events, which are extreme in relative terms respective to the time of the year. The number of compound events increases significantly and especially warm spells are increasing strongly - with an annual growth rates of 3.9 (3.5) \% for warm season (deseasonalised) compound events and 4.6 (4.4) \% for warm spells -, whereas for droughts the change is more ambiguous depending on the applied definition. Therefore, the rise in the number of compound events is primarily driven by temperature changes and not the lack of precipitation. The months July and August show the highest increases in warm season compound events, whereas the highest increases of deseasonalised compound events occur in spring and early summer. This increase in deseasonalised compound events can potentially have a significant impact on the functioning of Mediterranean ecosystems as this is the peak phase of ecosystem productivity and a vital phenophase.}, language = {en} } @article{BuergerPfisterBronstert2021, author = {B{\"u}rger, Gerd and Pfister, Angela and Bronstert, Axel}, title = {Zunehmende Starkregenintensit{\"a}ten als Folge der Klimaerw{\"a}rmung}, series = {Hydrologie und Wasserbewirtschaftung : HyWa = Hydrology and water resources management, Germany / Hrsg.: Fachverwaltungen des Bundes und der L{\"a}nder}, volume = {65}, journal = {Hydrologie und Wasserbewirtschaftung : HyWa = Hydrology and water resources management, Germany / Hrsg.: Fachverwaltungen des Bundes und der L{\"a}nder}, number = {6}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2021.6_1}, pages = {262 -- 271}, year = {2021}, abstract = {Extreme rainfall events of short duration in the range of hours and below are increasingly coming into focus due to the resulting damage from flash floods and also due to their possible intensification by anthropogenic climate change. The current study investigates possible trends in heavy rainfall intensities for stations from Swiss and Austrian alpine regions as well as for the Emscher-Lippe area in North Rhine-Westphalia on the basis of partly very long (> 50 years) and temporally highly resolved time series (<= 15 minutes). It becomes clear that there is an increase in extreme rainfall intensities, which can be well explained by the warming of the regional climate: the analyses of long-term trends in exceedance counts and return levels show considerable uncertainties, but are in the order of 30 \% increase per century. In addition, based on an "average" climate simulation for the 21st century, this paper describes a projection for extreme precipitation intensities at very high temporal resolution for a number of stations in the Emscher-Lippe region. A coupled spatial and temporal "downscaling" is applied, the key innovation of which is the consideration of the dependence of local rainfall intensity on air temperature. This procedure involves two steps: First, large-scale climate fields at daily resolution are statistically linked by regression to station temperature and precipitation values (spatial downscaling). In the second step, these station values are disaggregated to a temporal resolution of 10 minutes using a so-called multiplicative stochastic cascade model (MC) (temporal downscaling). The novel, temperature-sensitive variant additionally considers air temperature as an explanatory variable for precipitation intensities. Thus, the higher atmospheric moisture content expected with warming, which results from the Clausius-Clapeyron (CC) relationship, is included in the temporal downscaling.
For the statistical evaluation of the extreme short-term precipitation, the upper quantiles (99.9 \%), exceedance counts (P > 5mm), and 3-yr return levels of the <= 15-min duration step has been used. Only by adding temperature is the observed temperature observed of the extreme quantiles ("CC scaling") well reproduced. When comparing observed data and present-day simulations of the model cascade, the temperature-sensitive procedure shows consistent results. Compared to trends in recent decades, similar or even larger increases in extreme intensities are projected for the future. This is remarkable in that these appear to be driven primarily by local temperature, as the projected trends in daily precipitation values are negligible for this region.}, language = {de} } @article{RottlerVormoorFranckeetal.2021, author = {Rottler, Erwin and Vormoor, Klaus Josef and Francke, Till and Bronstert, Axel}, title = {Hydro Explorer}, series = {River research and applications}, volume = {37}, journal = {River research and applications}, number = {4}, publisher = {Wiley}, address = {New York}, issn = {1535-1459}, doi = {10.1002/rra.3772}, pages = {544 -- 554}, year = {2021}, abstract = {Climatic changes and anthropogenic modifications of the river basin or river network have the potential to fundamentally alter river runoff. In the framework of this study, we aim to analyze and present historic changes in runoff timing and runoff seasonality observed at river gauges all over the world. In this regard, we develop the Hydro Explorer, an interactive web app, which enables the investigation of >7,000 daily resolution discharge time series from the Global Runoff Data Centre (GRDC). The interactive nature of the developed web app allows for a quick comparison of gauges, regions, methods, and time frames. We illustrate the available analytical tools by investigating changes in runoff timing and runoff seasonality in the Rhine River Basin. Since we provide the source code of the application, existing analytical approaches can be modified, new methods added, and the tool framework can be re-used to visualize other data sets.}, language = {en} } @article{RottlerBronstertBuergeretal.2021, author = {Rottler, Erwin and Bronstert, Axel and B{\"u}rger, Gerd and Rakovec, Oldrich}, title = {Projected changes in Rhine River flood seasonality under global warming}, series = {Hydrology and earth system sciences : HESS / European Geosciences Union}, volume = {25}, journal = {Hydrology and earth system sciences : HESS / European Geosciences Union}, number = {5}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1607-7938}, doi = {10.5194/hess-25-2353-2021}, pages = {2353 -- 2371}, year = {2021}, abstract = {Climatic change alters the frequency and intensity of natural hazards. In order to assess potential future changes in flood seasonality in the Rhine River Basin, we analyse changes in streamflow, snowmelt, precipitation, and evapotranspiration at 1.5, 2.0 and 3.0 ◦C global warming levels. The mesoscale Hydrological Model (mHM) forced with an ensemble of climate projection scenarios (five general circulation models under three representative concentration pathways) is used to simulate the present and future climate conditions of both, pluvial and nival hydrological regimes. Our results indicate that the interplay between changes in snowmelt- and rainfall-driven runoff is crucial to understand changes in streamflow maxima in the Rhine River. Climate projections suggest that future changes in flood characteristics in the entire Rhine River are controlled by both, more intense precipitation events and diminishing snow packs. The nature of this interplay defines the type of change in runoff peaks. On the sub-basin level (the Moselle River), more intense rainfall during winter is mostly counterbalanced by reduced snowmelt contribution to the streamflow. In the High Rhine (gauge at Basel), the strongest increases in streamflow maxima show up during winter, when strong increases in liquid precipitation intensity encounter almost unchanged snowmelt-driven runoff. The analysis of snowmelt events suggests that at no point in time during the snowmelt season, a warming climate results in an increase in the risk of snowmelt-driven flooding. We do not find indications of a transient merging of pluvial and nival floods due to climate warming.}, language = {en} }