@misc{DimigenValsecchiSommeretal.2009, author = {Dimigen, Olaf and Valsecchi, Matteo and Sommer, Werner and Kliegl, Reinhold}, title = {Human Microsaccade-Related Visual Brain Responses}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56923}, year = {2009}, abstract = {Microsaccades are very small, involuntary flicks in eye position that occur on average once or twice per second during attempted visual fixation. Microsaccades give rise to EMG eye muscle spikes that can distort the spectrum of the scalp EEG and mimic increases in gamma band power. Here we demonstrate that microsaccades are also accompanied by genuine and sizeable cortical activity, manifested in the EEG. In three experiments, high-resolution eye movements were corecorded with the EEG: during sustained fixation of checkerboard and face stimuli and in a standard visual oddball task that required the counting of target stimuli. Results show that microsaccades as small as 0.15° generate a field potential over occipital cortex and midcentral scalp sites 100 -140 ms after movement onset, which resembles the visual lambda response evoked by larger voluntary saccades. This challenges the standard assumption of human brain imaging studies that saccade-related brain activity is precluded by fixation, even when fully complied with. Instead, additional cortical potentials from microsaccades were present in 86\% of the oddball task trials and of similar amplitude as the visual response to stimulus onset. Furthermore, microsaccade probability varied systematically according to the proportion of target stimuli in the oddball task, causing modulations of late stimulus-locked event-related potential (ERP) components. Microsaccades present an unrecognized source of visual brain signal that is of interest for vision research and may have influenced the data of many ERP and neuroimaging studies.}, language = {en} } @misc{ValsecchiDimigenKliegletal.2009, author = {Valsecchi, Matteo and Dimigen, Olaf and Kliegl, Reinhold and Sommer, Werner and Turatto, Massimo}, title = {Microsaccadic Inhibition and P300 Enhancement in a Visual Oddball Task}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57170}, year = {2009}, abstract = {It has recently been demonstrated that the presentation of a rare target in a visual oddball paradigm induces a prolonged inhibition of microsaccades. In the field of electrophysiology, the amplitude of the P300 component in event-related potentials (ERP) has been shown to be sensitive to the stimulus category (target vs. non target) of the eliciting stimulus, its overall probability, and the preceding stimulus sequence. In the present study we further specify the functional underpinnings of the prolonged microsaccadic inhibition in the visual oddball task, showing that the stimulus category, the frequency of a stimulus and the preceding stimulus sequence influence microsaccade rate. Furthermore, by co-recording ERPs and eye-movements, we were able to demonstrate that, despite being largely sensitive to the same experimental manipulation, the amplitude of P300 and the microsaccadic inhibition predict each other very weakly, and thus constitute two independent measures of the brain's response to rare targets in the visual oddball paradigm.}, language = {en} } @misc{FroemerDimigenNiefindetal.2015, author = {Fr{\"o}mer, Romy and Dimigen, Olaf and Niefind, Florian and Kliegl, Reinhold and Sommer, Werner}, title = {Are individual differences in reading speed related to extrafoveal visual acuity and crowding?}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {494}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408003}, pages = {18}, year = {2015}, abstract = {Readers differ considerably in their speed of self-paced reading. One factor known to influence fixation durations in reading is the preprocessing of words in parafoveal vision. Here we investigated whether individual differences in reading speed or the amount of information extracted from upcoming words (the preview benefit) can be explained by basic differences in extrafoveal vision-i.e., the ability to recognize peripheral letters with or without the presence of flanking letters. Forty participants were given an adaptive test to determine their eccentricity thresholds for the identification of letters presented either in isolation (extrafoveal acuity) or flanked by other letters (crowded letter recognition). In a separate eye-tracking experiment, the same participants read lists of words from left to right, while the preview of the upcoming words was manipulated with the gaze-contingent moving window technique. Relationships between dependent measures were analyzed on the observational level and with linear mixed models. We obtained highly reliable estimates both for extrafoveal letter identification (acuity and crowding) and measures of reading speed (overall reading speed, size of preview benefit). Reading speed was higher in participants with larger uncrowded windows. However, the strength of this relationship was moderate and it was only observed if other sources of variance in reading speed (e.g., the occurrence of regressive saccades) were eliminated. Moreover, the size of the preview benefit-an important factor in normal reading-was larger in participants with better extrafoveal acuity. Together, these results indicate a significant albeit moderate contribution of extrafoveal vision to individual differences in reading speed.}, language = {en} }