@misc{GranacherGollhoferHortobagyietal.2013, author = {Granacher, Urs and Gollhofer, Albert and Hortobagyi, Tibor and Kressig, Reto W. and M{\"u}hlbauer, Thomas}, title = {The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors a systematic review}, series = {Sports medicine}, volume = {43}, journal = {Sports medicine}, number = {7}, publisher = {Springer}, address = {Auckland}, issn = {0112-1642}, doi = {10.1007/s40279-013-0041-1}, pages = {627 -- 641}, year = {2013}, abstract = {Background The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. Objective The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. Data Sources A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). Study Selection A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Study Appraisal and Synthesis Methods Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. Results The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 \%, mean effect size = 0.99; mean balance/functional performance gain = 23 \%, mean ES = 0.88) and by PET (mean strength gain = 12 \%, mean ES = 0.52; mean balance/functional performance gain = 18 \%, mean ES = 0.71). Limitations Given that the mean PEDro quality score did not reach the predetermined cut-off of >= 6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Conclusions Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises.}, language = {en} } @misc{BeijersbergenGranacherVandervoortetal.2013, author = {Beijersbergen, Chantal M. I. and Granacher, Urs and Vandervoort, A. A. and DeVita, P. and Hortobagyi, Tibor}, title = {The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown}, series = {Ageing research reviews : ARR}, volume = {12}, journal = {Ageing research reviews : ARR}, number = {2}, publisher = {Elsevier}, address = {Clare}, issn = {1568-1637}, doi = {10.1016/j.arr.2013.03.001}, pages = {618 -- 627}, year = {2013}, abstract = {Maintaining and increasing walking speed in old age is clinically important because this activity of daily living predicts functional and clinical state. We reviewed evidence for the biomechanical mechanisms of how strength and power training increase gait speed in old adults. A systematic search yielded only four studies that reported changes in selected gait biomechanical variables after an intervention. A secondary analysis of 20 studies revealed an association of r(2) = 0.21 between the 22\% and 12\% increase, respectively, in quadriceps strength and gait velocity in 815 individuals age 72. In 6 studies, there was a correlation of r(2) = 0.16 between the 19\% and 9\% gains in plantarflexion strength and gait speed in 240 old volunteers age 75. In 8 studies, there was zero association between the 35\% and 13\% gains in leg mechanical power and gait speed in 150 old adults age 73. To increase the efficacy of intervention studies designed to improve gait speed and other critical mobility functions in old adults, there is a need for a paradigm shift from conventional (clinical) outcome assessments to more sophisticated biomechanical analyses that examine joint kinematics, kinetics, energetics, muscle-tendon function, and musculoskeletal modeling before and after interventions.}, language = {en} } @misc{LesinskiHortobagyiMuehlbaueretal.2015, author = {Lesinski, Melanie and Hortobagyi, Tibor and M{\"u}hlbauer, Thomas and Gollhofer, Albert and Granacher, Urs}, title = {Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis}, series = {Sports medicine}, volume = {45}, journal = {Sports medicine}, number = {4}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-014-0284-5}, pages = {557 -- 576}, year = {2015}, abstract = {Background Balance training (BT) has been used for the promotion of balance and sports-related skills as well as for prevention and rehabilitation of lower extremity sport injuries. However, evidence-based dose-response relationships in BT parameters have not yet been established. Objective The objective of this systematic literature review and meta-analysis was to determine dose-response relationships in BT parameters that lead to improvements in balance in young healthy adults with different training status. Data Sources A computerized systematic literature search was performed in the electronic databases PubMed, Web of Knowledge, and SPORTDiscus from January 1984 up to May 2014 to capture all articles related to BT in young healthy adults. Study Eligibility Criteria A systematic approach was used to evaluate the 596 articles identified for initial review. Only randomized controlled studies were included if they investigated BT in young healthy adults (16-40 years) and tested at least one behavioral balance performance outcome. In total, 25 studies met the inclusion criteria for review. Study Appraisal and Synthesis Methods Studies were evaluated using the physiotherapy evidence database (PEDro) scale. Within-subject effect sizes (ESdw) and between-subject effect sizes (ESdb) were calculated. The included studies were coded for the following criteria: training status (elite athletes, sub-elite athletes, recreational athletes, untrained subjects), training modalities (training period, frequency, volume, etc.), and balance outcome (test for the assessment of steady-state, proactive, and reactive balance). Results Mean ESdb demonstrated that BT is an effective means to improve steady-state (ESdb = 0.73) and proactive balance (ESdb = 0.92) in healthy young adults. Studies including elite athletes showed the largest effects (ESdb = 1.29) on measures of steady-state balance as compared with studies analyzing sub-elite athletes (ESdb = 0.32), recreational athletes (ESdb = 0.69), and untrained subjects (ESdb = 0.82). Our analyses regarding dose-response relationships in BT revealed that a training period of 11-12 weeks (ESdb = 1.09), a training frequency of three (mean ESdb = 0.72) or six (single ESdb = 1.84) sessions per week, at least 16-19 training sessions in total (ESdb = 1.12), a duration of 11-15 min for a single training session (ESdb = 1.11), four exercises per training session (ESdb = 1.29), two sets per exercise (ESdb = 1.63), and a duration of 21-40 s for a single BT exercise (ESdb = 1.06) is most effective in improving measures of steady-state balance. Due to a small number of studies, dose-response relationships of BT for measures of proactive and reactive balance could not be qualified. Limitations The present findings must be interpreted with caution because it is difficult to separate the impact of a single training modality (e.g., training frequency) from that of the others. Moreover, the quality of the included studies was rather limited, with a mean PEDro score of 5. Conclusions Our detailed analyses revealed effective BT parameters for the improvement of steady-state balance. Thus, practitioners and coaches are advised to consult the identified dose-response relationships of this systematic literature review and meta-analysis to implement effective BT protocols in clinical and sports-related contexts. However, further research of high methodological quality is needed to (1) determine dose-response relationships of BT for measures of proactive and reactive balance, (2) define effective sequencing protocols in BT (e.g., BT before or after a regular training session), (3) discern the effects of detraining, and (4) develop a feasible and effective method to regulate training intensity in BT.}, language = {en} } @misc{HortobagyiLesinskiFernandezdelOlmoetal.2015, author = {Hortobagyi, Tibor and Lesinski, Melanie and Fernandez-del-Olmo, Miguel and Granacher, Urs}, title = {Small and inconsistent effects of whole body vibration on athletic performance: a systematic review and meta-analysis}, series = {European journal of applied physiology}, volume = {115}, journal = {European journal of applied physiology}, number = {8}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-015-3194-9}, pages = {1605 -- 1625}, year = {2015}, abstract = {We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 \% acute effect on maximal voluntary leg force (-6.4 \%, effect size = -0.43, 1 study), leg power (4.7 \%, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 \%, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 \%, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 \% chronic effect on maximal voluntary leg force (14.6 \%, weighted mean effect size = 0.44, 5 studies), leg power (10.7 \%, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 \%, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 \%, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance.}, language = {en} } @misc{LesinskiHortobagyiMuehlbaueretal.2016, author = {Lesinski, Melanie and Hortobagyi, Tibor and M{\"u}hlbauer, Thomas and Gollhofer, Albert and Granacher, Urs}, title = {Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-analysis (vol 45, pg 1721, 2015)}, series = {Sports medicine}, volume = {46}, journal = {Sports medicine}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-016-0500-6}, pages = {457 -- 457}, year = {2016}, language = {en} } @misc{HortobagyiLesinskiGableretal.2016, author = {Hortobagyi, Tibor and Lesinski, Melanie and Gabler, Martijn and VanSwearingen, Jessie M. and Malatesta, Davide and Granacher, Urs}, title = {Gait Speed: A Systematic Review and Meta-Analysis (vol 45, pg 1627, 2015)}, series = {Sports medicine}, volume = {46}, journal = {Sports medicine}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-016-0498-9}, pages = {453 -- 453}, year = {2016}, language = {en} } @misc{LesinskiHortobagyiMuehlbaueretal.2016, author = {Lesinski, Melanie and Hortobagyi, Tibor and M{\"u}hlbauer, Thomas and Gollhofer, Albert and Granacher, Urs}, title = {Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis (vol 45, pg 557, 2015)}, series = {Sports medicine}, volume = {46}, journal = {Sports medicine}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-016-0499-8}, pages = {455 -- 455}, year = {2016}, language = {en} } @article{BeijersbergenHortobagyiBeurskensetal.2016, author = {Beijersbergen, Chantal M. I. and Hortobagyi, Tibor and Beurskens, Rainer and Lenzen-Grossimlinghaus, Romana and Gabler, Martijn and Granacher, Urs}, title = {Effects of Power Training on Mobility and Gait Biomechanics in Old Adults with Moderate Mobility Disability: Protocol and Design of the Potsdam Gait Study (POGS)}, series = {Gerontology}, volume = {62}, journal = {Gerontology}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000444752}, pages = {597 -- 603}, year = {2016}, abstract = {Background: Walking speed decreases in old age. Even though old adults regularly participate in exercise interventions, we do not know how the intervention-induced changes in physical abilities produce faster walking. The Potsdam Gait Study (POGS) will examine the effects of 10 weeks of power training and detraining on leg muscle power and, for the first time, on complete gait biomechanics, including joint kinematics, kinetics, and muscle activation in old adults with moderate mobility disability. Methods/Design: POGS is a randomized controlled trial with two arms, each crossed over, without blinding. Arm 1 starts with a 10-week control period to assess the reliability of the tests and is then crossed over to complete 25-30 training sessions over 10 weeks. Arm 2 completes 25-30 exercise sessions over 10 weeks, followed by a 10-week follow-up (detraining) period. The exercise program is designed to improve lower extremity muscle power. Main outcome measures are: muscle power, gait speed, and gait biomechanics measured at baseline and after 10 weeks of training and 10 weeks of detraining. Discussion: It is expected that power training will increase leg muscle power measured by the weight lifted and by dynamometry, and these increased abilities become expressed in joint powers measured during gait. Such favorably modified powers will underlie the increase in step length, leading ultimately to a faster walking speed. POGS will increase our basic understanding of the biomechanical mechanisms of how power training improves gait speed in old adults with moderate levels of mobility disabilities. (C) 2016 S. Karger AG, Basel}, language = {en} } @article{MuehlbauerGranacherBordeetal.2017, author = {Muehlbauer, Thomas and Granacher, Urs and Borde, Ron and Hortobagyi, Tibor}, title = {Non-Discriminant Relationships between Leg Muscle Strength, Mass and Gait Performance in Healthy Young and Old Adults}, series = {Gerontology}, volume = {64}, journal = {Gerontology}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {0304-324X}, doi = {10.1159/000480150}, pages = {11 -- 18}, year = {2017}, abstract = {Background: Gait speed declines with increasing age, but it is unclear if gait speed preferentially correlates with leg muscle strength or mass. Objective: We determined the relationship between gait speed and (1) leg muscle strength measured at 3 lower extremity joints and (2) leg lean tissue mass (LTM) in healthy young (age: 25 years, n = 20) and old (age: 70 years, n = 20) adults. Methods: Subjects were tested for maximal isokinetic hip, knee, and ankle extension torque, leg LTM by bioimpedance, and gait performance (i.e., gait speed, stride length) at preferred and maximal gait speeds. Results: We found no evidence for a preferential relationship between gait performance and leg muscle strength compared with gait performance and leg LTM in healthy young and old adults. In old adults, hip extensor strength only predicted habitual gait speed (R-2 = 0.29, p = 0.015), whereas ankle plantarflexion strength only predicted maximal gait speed and stride length (both R-2 = 0.40, p = 0.003). Conclusions: Gait speed did not preferentially correlate with leg muscle strength or leg LTM, favoring neither outcome for predicting mobility. Thus, we recommend that both leg muscle strength and leg LTM should be tested and trained complementarily. Further, hip and ankle extension torque predicted gait performance, and thus we recommend to test and train healthy old adults by functional integrated multiarticular rather than monoarticular lower extremity strength exercises.}, language = {en} } @article{BeijersbergenGranacherGaebleretal.2017, author = {Beijersbergen, Chantal M. I. and Granacher, Urs and Gaebler, Martijn and DeVita, Paul and Hortobagyi, Tibor}, title = {Hip mechanics underlie lower extremity power training-induced increase in old adults' fast gait velocity}, series = {Gait \& posture}, volume = {52}, journal = {Gait \& posture}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2016.12.024}, pages = {338 -- 344}, year = {2017}, abstract = {Methods: As part of the Potsdam Gait Study (POGS), healthy old adults completed a no-intervention control period (69.1 +/- 4A yrs, n =14) or a power training program followed by detraining (72.9 +/- 5.4 yrs, n = 15).We measured isokinetic knee extensor and plantarflexor power and measured hip, knee and ankle kinetics at habitual, fast and standardized walking speeds. Results: Power training significantly increased isokinetic knee extensor power (25\%), plantarflexor power (43\%), and fast gait velocity (5.9\%). Gait mechanics underlying the improved fast gait velocity included increases in hip angular impulse (29\%) and H1 work (37\%) and no changes in positive knee (K2) and A2 work. Detraining further improved fast gait velocity (4.7\%) with reductions in H1(-35\%), and increases in K2 (36\%) and A2 (7\%). Conclusion: Power training increased fast gait velocity in healthy old adults by increasing the reliance on hip muscle function and thus further strengthened the age-related distal-to-proximal shift in muscle function. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} }