@article{MurrayBraunReiners2018, author = {Murray, Kendra E. and Braun, Jean and Reiners, Peter W.}, title = {Toward Robust Interpretation of Low-Temperature Thermochronometers in Magmatic Terranes}, series = {Geochemistry, geophysics, geosystems}, volume = {19}, journal = {Geochemistry, geophysics, geosystems}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2018GC007595}, pages = {3739 -- 3763}, year = {2018}, abstract = {Many regions central to our understanding of tectonics and landscape evolution are active or ancient magmatic terranes, and robust interpretation of low-temperature thermochronologic ages in these settings requires careful attention to the drivers of rock heating and cooling, including magmatism. However, we currently lack a quantitative framework for evaluating the potential role of magmatic coolingthat is, post-magmatic thermal relaxationin shaping cooling age patterns in regions with a history of intrusive magmatism. Here we use analytical approximations and numerical models to characterize how low-temperature thermochronometers document cooling inside and around plutons in steadily exhuming environments. Our models predict that the thermal field a pluton intrudes into, specifically the ambient temperatures relative to the closure temperature of a given thermochronometer, is as important as the pluton size and temperature in controlling the pattern and extent of thermochronometer resetting in the country rocks around a pluton. We identify one advective and several conductive timescales that govern the relationship between the crystallization and cooling ages inside a pluton. In synthetic vertical age-elevation relationships (AERs), resetting next to plutons results in changes in AER slope that could be misinterpreted as past changes in exhumation rate if the history of magmatism is not accounted for. Finally, we find that large midcrustal plutons, such as those emplaced at similar to 10-15-km depth, can reset the low-temperature thermochronometers far above them in the upper crusta result with considerable consequences for thermochronology in arcs and regions with a history of magmatic activity that may not have a surface expression.}, language = {en} } @article{BraunGemignanivanderBeek2018, author = {Braun, Jean and Gemignani, Lorenzo and van der Beek, Peter}, title = {Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands}, series = {Earth surface dynamics}, volume = {6}, journal = {Earth surface dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-6-257-2018}, pages = {257 -- 270}, year = {2018}, abstract = {One of the main purposes of detrital thermochronology is to provide constraints on the regional-scale exhumation rate and its spatial variability in actively eroding mountain ranges. Procedures that use cooling age distributions coupled with hypsometry and thermal models have been developed in order to extract quantitative estimates of erosion rate and its spatial distribution, assuming steady state between tectonic uplift and erosion. This hypothesis precludes the use of these procedures to assess the likely transient response of mountain belts to changes in tectonic or climatic forcing. Other methods are based on an a priori knowledge of the in situ distribution of ages to interpret the detrital age distributions. In this paper, we describe a simple method that, using the observed detrital mineral age distributions collected along a river, allows us to extract information about the relative distribution of erosion rates in an eroding catchment without relying on a steady-state assumption, the value of thermal parameters or an a priori knowledge of in situ age distributions. The model is based on a relatively low number of parameters describing lithological variability among the various sub-catchments and their sizes and only uses the raw ages. The method we propose is tested against synthetic age distributions to demonstrate its accuracy and the optimum conditions for it use. In order to illustrate the method, we invert age distributions collected along the main trunk of the Tsangpo-Siang-Brahmaputra river system in the eastern Himalaya. From the inversion of the cooling age distributions we predict present-day erosion rates of the catchments along the Tsangpo-Siang-Brahmaputra river system, as well as some of its tributaries. We show that detrital age distributions contain dual information about present-day erosion rate, i. e., from the predicted distribution of surface ages within each catchment and from the relative contribution of any given catchment to the river distribution. The method additionally allows comparing modern erosion rates to long-term exhumation rates. We provide a simple implementation of the method in Python code within a Jupyter Notebook that includes the data used in this paper for illustration purposes.}, language = {en} } @article{HermanBraunDealetal.2018, author = {Herman, Frederic and Braun, Jean and Deal, Eric and Prasicek, Gunther}, title = {The response time of glacial erosion}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004586}, pages = {801 -- 817}, year = {2018}, abstract = {There has been recent progress in the understanding of the evolution of Quaternary climate. Simultaneously, there have been improvements in the understanding of glacial erosion processes, with better parameter constraints. Despite this, there remains much debate about whether or not the observed cooling over the Quaternary has driven an increase in glacial erosion rates. Most studies agree that the erosional response to climate change must be transient; therefore, the time scale of the climatic change and the response time of glacial erosion must be accounted for. Here we analyze the equations governing glacial erosion in a steadily uplifting landscape with variable climatic forcing and derive expressions for two fundamental response time scales. The first time scale describes the response of the glacier and the second one the glacial erosion response. We find that glaciers have characteristic time scales of the order of 10 to 10,000 years, while the characteristic time scale for glacial erosion is of the order of a few tens of thousands to a few million years. We then use a numerical model to validate the approximations made to derive the analytical solutions. The solutions show that short period forcing is dampened by the glacier response time, and long period forcing (>1 Myr) may be dampened by erosional response of glaciers when the rock uplift rates are high. In most tectonic and climatic conditions, we expect to see the strongest response of glacial erosion to periodic climatic forcing corresponding to Plio-Pleistocene climatic cycles. Finally, we use the numerical model to predict the response of glacial systems to the observed climatic forcing of the Quaternary, including, but not limited to, the Milankovich periods and the long-term secular cooling trend. We conclude that an increase of glacial erosion in response to Quaternary cooling is physically plausible, and we show that the magnitude of the increase depends on rock uplift and ice accumulation rates.}, language = {en} } @article{PicoMitrovicaBraunetal.2018, author = {Pico, T. and Mitrovica, J. X. and Braun, Jean and Ferrier, K. L.}, title = {Glacial isostatic adjustment deflects the path of the ancestral Hudson River}, series = {Geology}, volume = {46}, journal = {Geology}, number = {7}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G40221.1}, pages = {591 -- 594}, year = {2018}, abstract = {Quantifying the pace of ice-sheet growth is critical to understanding ice-age climate and dynamics. Here, we show that the diversion of the Hudson River (northeastern North America) late in the last glaciation phase (ca. 30 ka), which some previous studies have speculated was due to glacial isostatic adjustment (GIA), can be used to infer the timing of the Laurentide Ice Sheet's growth to its maximum extent. Landscapes in the vicinity of glaciated regions have likely responded to crustal deformation produced by ice-sheet growth and decay through river drainage reorganization, given that rates of uplift and subsidence are on the order of tens of meters per thousand years. We perform global, gravitationally self-consistent simulations of GIA and input the predicted crustal deformation field into a landscape evolution model. Our calculations indicate that the eastward diversion of the Hudson River at 30 ka is consistent with exceptionally rapid growth of the Laurentide Ice Sheet late in the glaciation phase, beginning at 50-35 ka.}, language = {en} } @article{PrasicekHermanRobletal.2018, author = {Prasicek, G{\"u}nther and Herman, Frederic and Robl, J{\"o}rg and Braun, Jean}, title = {Glacial steady state topography controlled by the coupled influence of tectonics and climate}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2017JF004559}, pages = {1344 -- 1362}, year = {2018}, abstract = {Glaciers and rivers are the main agents of mountain erosion. While in the fluvial realm empirical relationships and their mathematical description, such as the stream power law, improved the understanding of fundamental controls on landscape evolution, simple constraints on glacial topography and governing scaling relations are widely lacking. We present a steady state solution for longitudinal profiles along eroding glaciers in a coupled system that includes tectonics and climate. We combined the shallow ice approximation and a glacial erosion rule to calculate ice surface and bed topography from prescribed glacier mass balance gradient and rock uplift rate. Our approach is inspired by the classic application of the stream power law for describing a fluvial steady state but with the striking difference that, in the glacial realm, glacier mass balance is added as an altitude-dependent variable. From our analyses we find that ice surface slope and glacial relief scale with uplift rate with scaling exponents indicating that glacial relief is less sensitive to uplift rate than relief in most fluvial landscapes. Basic scaling relations controlled by either basal sliding or internal deformation follow a power law with the exponent depending on the exponents for the glacial erosion rule and Glen's flow law. In a mixed scenario of sliding and deformation, complicated scaling relations with variable exponents emerge. Furthermore, a cutoff in glacier mass balance or cold ice in high elevations can lead to substantially larger scaling exponents which may provide an explanation for high relief in high latitudes.}, language = {en} } @article{BiswasHermanKingetal.2018, author = {Biswas, R. H. and Herman, F. and King, G. E. and Braun, Jean}, title = {Thermoluminescence of feldspar as a multi-thermochronometer to constrain the temporal variation of rock exhumation in the recent past}, series = {Earth \& planetary science letters}, volume = {495}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.04.030}, pages = {56 -- 68}, year = {2018}, abstract = {Natural thermoluminescence (TL) in rocks reflects a dynamic equilibrium between radiation-induced TL growth and decay via thermal and athermal pathways. When rocks exhume through Earth's crust and cool from high to low temperature, this equilibrium level increases as the temperature dependent thermal decay decreases. This phenomenon can be exploited to extract thermal histories of rocks. The main advantage of TL is that a single TL glow curve has a wide range of thermal stabilities (lifetime 100 °C/Ma, whereas deeper traps, i.e. with higher activation energies, provide constraints on thermal histories for higher cooling rates (>300 °C/Ma). Finally, we show how the path of rock exhumation (i.e., depth vs. time) can be constrained using an inverse approach. The newly developed methodology is applied to rapidly cooled samples from the Namche Barwa massif, eastern Himalaya to suggest a trend in exhumation rate with time that follows an inverse correlation with global temperature and glaciers equilibrium altitude line (ELA).}, language = {en} } @article{DealBraunBotter2018, author = {Deal, Eric and Braun, Jean and Botter, Gianluca}, title = {Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency}, series = {Journal of geophysical research : Earth surface}, volume = {123}, journal = {Journal of geophysical research : Earth surface}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004393}, pages = {744 -- 778}, year = {2018}, abstract = {Due to the challenges in upscaling daily climatic forcing to geological time, physically realistic models describing how rainfall drives fluvial erosion are lacking. To bridge this gap between short-term hydrology and long-term geomorphology, we derive a theoretical framework for long-term fluvial erosion rates driven by realistic climate by integrating an established stochastic-mechanistic model of hydrology into a threshold-stochastic formulation of stream power. The hydrological theory provides equations for the daily streamflow probability distribution as a function of climatic boundary conditions. The new parameters introduced are rooted firmly in established climatic and hydrological theory. This allows us to account for how fluvial erosion rates respond to changes in rainfall intensity, frequency, evapotranspiration rates, and soil moisture dynamics in a way that is consistent with existing theories. We use this framework to demonstrate how hydroclimatic conditions and erosion threshold magnitude control the degree of nonlinearity between steepness index and erosion rate. We find that hydrological processes can have a significant influence on how erosive a particular climatic forcing will be. By accounting for the influence of hydrology on fluvial erosion, we conclude that climate is an important control on erosion rates and long-term landscape evolution.}, language = {en} } @article{MargirierBraunGautheronetal.2019, author = {Margirier, Audrey and Braun, Jean and Gautheron, Cecile and Carcaillet, Julien and Schwartz, Stephane and Jamme, Rosella Pinna and Stanley, Jessica}, title = {Climate control on Early Cenozoic denudation of the Namibian margin as deduced from new thermochronological constraints}, series = {Earth \& planetary science letters}, volume = {527}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2019.115779}, pages = {11}, year = {2019}, abstract = {The processes that control long term landscape evolution in continental interiors and, in particular, along passive margins such as in southern Africa, are still the subject of much debate (e.g. Braun, 2018). Although today the Namibian margin is characterized by an arid climate, it has experienced climatic fluctuations during the Cenozoic and, yet, to date no study has documented the potential role of climate on its erosion history. In western Namibia, the Brandberg Massif, an erosional remnant or inselberg, provides a good opportunity to document the Cenozoic denudation history of the margin using the relationship between rock cooling or exhumation ages and their elevation. Here we provide new apatite (UThSm)/He dates on the Brandberg Inselberg that range from 151 +/- 12 to 30 +/- 2 Ma. Combined with existing apatite fission track data, they yield new constraints on the denudation history of the margin. These data document two main cooling phases since continental break-up 130 Myr ago, a rapid one (similar to 10 degrees C/Myr) following break-up and a slower one (similar to 12 degrees C/Myr) between 65 and 35 Ma. We interpret them respectively to be related to escarpment erosion following rifting and continental break-up and as a phase of enhanced denudation during the Early Eocene Climatic Optimum. We propose that during the Early Eocene Climatic Optimum chemical weathering was important and contributed significantly to the denudation of the Namibian margin and the formation of a pediplain around the Brandberg and enhanced valley incision within the massif. Additionally, aridification of the region since 35 Ma has resulted in negligible denudation rates since that time. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{CordonnierBovyBraun2019, author = {Cordonnier, Guillaume and Bovy, Benoit and Braun, Jean}, title = {A versatile, linear complexity algorithm for flow routing in topographies with depressions}, series = {Earth surface dynamics}, volume = {7}, journal = {Earth surface dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-7-549-2019}, pages = {549 -- 562}, year = {2019}, abstract = {We present a new algorithm for solving the common problem of flow trapped in closed depressions within digital elevation models, as encountered in many applications relying on flow routing. Unlike other approaches (e.g., the Priority-Flood depression filling algorithm), this solution is based on the explicit computation of the flow paths both within and across the depressions through the construction of a graph connecting together all adjacent drainage basins. Although this represents many operations, a linear time complexity can be reached for the whole computation, making it very efficient. Compared to the most optimized solutions proposed so far, we show that this algorithm of flow path enforcement yields the best performance when used in landscape evolution models. In addition to its efficiency, our proposed method also has the advantage of letting the user choose among different strategies of flow path enforcement within the depressions (i.e., filling vs. carving). Furthermore, the computed graph of basins is a generic structure that has the potential to be reused for solving other problems as well, such as the simulation of erosion. This sequential algorithm may be helpful for those who need to, e.g., process digital elevation models of moderate size on single computers or run batches of simulations as part of an inference study.}, language = {en} } @article{YuanBraunGueritetal.2019, author = {Yuan, Xiaoping and Braun, Jean and Guerit, Laure and Simon, Brendan and Bovy, Beno{\^i}t and Rouby, Delphine and Robin, C{\´e}cile and Jiao, R.}, title = {Linking continental erosion to marine sediment transport and deposition: A new implicit and O(N) method for inverse analysis}, series = {Earth \& planetary science letters}, volume = {524}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2019.115728}, pages = {15}, year = {2019}, abstract = {The marine sedimentary record contains unique information about the history of erosion, uplift and climate of the adjacent continent. Inverting this record has been the purpose of many numerical studies. However, limited attention has been given to linking continental erosion to marine sediment transport and deposition in large-scale surface process evolution models. Here we present a new numerical method for marine sediment transport and deposition that is directly coupled to a landscape evolution algorithm solving for the continental fluvial and hillslope erosion equations using implicit and O(N) algorithms. The new method takes into account the sorting of grain sizes (e.g., silt and sand) in the marine domain using a non-linear multiple grain-size diffusion equation and assumes that the sediment flux exported from the continental domain is proportional to the bathymetric slope. Specific transport coefficients and compaction factors are assumed for the two different grain sizes to simulate the stratigraphic architecture. The resulting set of equations is solved using an efficient (O(N) and implicit) algorithm. It can thus be used to invert stratigraphic geometries using a Bayesian approach that requires a large number of simulations. This new method is used to invert the sedimentary geometry of a natural example, the Ogooue Delta (Gabon), over the last similar to 5 Myr. The objective is to unravel the set of erosional histories of the adjacent continental domain compatible with the observed geometry of the offshore delta. For this, we use a Bayesian inversion scheme in which the misfit function is constructed by comparing four geometrical parameters between the natural and the simulated delta: the volume of sediments stored in the delta, the surface slope, the initial and the final shelf lengths. We find that the best-fit values of the transport coefficients for silt in the marine domain are in the range of 300 - 500 m(2)/yr, in agreement with previous studies on offshore diffusion. We also show that, in order to fit the sedimentary geometry, erosion rate on the continental domain must have increased by a factor of 6 to 8 since 5.3 Ma. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} }