@article{HaendelvonSpechtKuehnetal.2015, author = {H{\"a}ndel, Annabel and von Specht, Sebastian and Kuehn, Nicolas M. and Scherbaum, Frank}, title = {Mixtures of ground-motion prediction equations as backbone models for a logic tree: an application to the subduction zone in Northern Chile}, series = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, volume = {13}, journal = {Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1570-761X}, doi = {10.1007/s10518-014-9636-7}, pages = {483 -- 501}, year = {2015}, abstract = {In probabilistic seismic hazard analysis, different ground-motion prediction equations (GMPEs) are commonly combined within a logic tree framework. The selection of appropriate GMPEs, however, is a non-trivial task, especially for regions where strong motion data are sparse and where no indigenous GMPE exists because the set of models needs to capture the whole range of ground-motion uncertainty. In this study we investigate the aggregation of GMPEs into a mixture model with the aim to infer a backbone model that is able to represent the center of the ground-motion distribution in a logic tree analysis. This central model can be scaled up and down to obtain the full range of ground-motion uncertainty. The combination of models into a mixture is inferred from observed ground-motion data. We tested the new approach for Northern Chile, a region for which no indigenous GMPE exists. Mixture models were calculated for interface and intraslab type events individually. For each source type we aggregated eight subduction zone GMPEs using mainly new strong-motion data that were recorded within the Plate Boundary Observatory Chile project and that were processed within this study. We can show that the mixture performs better than any of its component GMPEs, and that it performs comparable to a regression model that was derived for the same dataset. The mixture model seems to represent the median ground motions in that region fairly well. It is thus able to serve as a backbone model for the logic tree.}, language = {en} } @article{HaendelOhrnbergerKrueger2016, author = {H{\"a}ndel, Annabel and Ohrnberger, Matthias and Kr{\"u}ger, Frank}, title = {Extracting near-surface Q(L) between 1-4 Hz from higher-order noise correlations in the Euroseistest area, Greece}, series = {Geophysical journal international}, volume = {207}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggw295}, pages = {655 -- 666}, year = {2016}, abstract = {Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (> 1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings < 2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C-3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C-3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C-3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors Q(L). The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient gamma and Q(L) can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area.}, language = {en} } @phdthesis{Haendel2018, author = {H{\"a}ndel, Annabel}, title = {Ground-motion model selection and adjustment for seismic hazard analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418123}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2018}, abstract = {Erdbeben k{\"o}nnen starke Bodenbewegungen erzeugen und es ist wichtig, diese in einer seismischen Gef{\"a}hrdungsanalyse korrekt vorherzusagen. {\"U}blicherweise werden dazu empirisch ermittelte Bodenbewegungsmodelle (GMPE) in einem logischen Baum zusammengef{\"u}gt. Wenn jedoch die Bodenbewegung in einem Gebiet mit geringer Seismizit{\"a}t bestimmen werden soll, dann fehlen in der Regel die Daten, um regionsspezifische GMPEs zu entwickeln. In diesen F{\"a}llen ist es notwendig, auf Modelle aus anderen Gebieten mit guter Datengrundlage zur{\"u}ckzugreifen und diese an die Zielregion anzupassen. Zur korrekten Anpassung werden seismologische Informationen aus der Zielregion wie beispielsweise die standortspezifische D{\"a}mpfung kappa0 ben{\"o}tigt. Diese Parameter lassen sich jedoch ebenfalls nur unzuverl{\"a}ssig bestimmen, wenn die Datengrundlage schlecht ist. In meiner Dissertation besch{\"a}ftige ich mich daher mit der Auswahl von GMPEs f{\"u}r den logischen Baum beziehungsweise deren Anpassung an Regionen mit geringer Seismizit{\"a}t. Ich folge dabei zwei verschiedenen Strategien. Im ersten Ansatz geht es um das Aufstellen eines logischen Baumes, falls kein regionsspezifisches Modell vorhanden ist. Ich stelle eine Methode vor, in der mehrere regionsfremde Modelle zu einem Mixmodell zusammengef{\"u}gt werden. Die Modelle werden dabei je nach ihrer Eignung gewichtet und die Gewichte mittels der wenigen verf{\"u}gbaren Daten aus der Zielregion ermittelt. Ein solches Mixmodell kann als sogenanntes 'Backbone'-Modell verwendet werden, welches in der Lage ist, mittlere Bodenbewegungen in der Zielregion korrekt vorherzusagen. Ich teste diesen Ansatz f{\"u}r Nordchile und acht GMPEs, die f{\"u}r verschiedene Subduktionszonen auf der Welt entwickelt wurden. Die Resultate zeigen, dass das Mixmodell bessere Ergebnisse liefert als die einzelnen GMPEs, die zu seiner Erzeugung genutzt wurden. Es ist außerdem ebenso gut in der Vorhersage von Bodenbewegungen wie ein Regressionsmodell, welches extra f{\"u}r Nordchile entwickelt wurde. Im zweiten Ansatz besch{\"a}ftige ich mich mit der Bestimmung der standortspezifischen D{\"a}mpfung kappa0. kappa0 ist einer der wichtigsten Parameter zur Anpassung eines GMPEs an eine andere Region. Mein Ziel ist es, kappa0 aus seismischer Bodenunruhe anstelle von Erdbeben zu ermitteln, da diese kontinuierlich aufgezeichnet wird. Mithilfe von Interferometrie kann die Geschwindigkeit und D{\"a}mpfung von seismischen Wellen im Untergrund bestimmt werden. Dazu werden lange Aufzeichnungsreihen seismischer Bodenunruhe entweder kreuzkorreliert oder entfaltet (Dekonvolution). Die Bestimmung der D{\"a}mpfung aus Bodenunruhe bei Frequenzen {\"u}ber 1 Hz und in geringen Tiefen ist jedoch nicht trivial. Ich zeige in meiner Dissertation die Ergebnisse von zwei Studien. In der ersten Studie wird die D{\"a}mpfung von Love-Wellen zwischen 1-4 Hz f{\"u}r ein kleines Testarray in Griechenland ermittelt. In der zweiten Studie verwende ich die Daten einer Bohrloch und einer Oberfl{\"a}chenstation aus dem Vogtland, um die D{\"a}mpfung von S-Wellen zwischen 5-15 Hz zu bestimmen. Diese beiden Studien stellen jedoch nur den Ausgangspunkt f{\"u}r zuk{\"u}nftige Untersuchungen dar, in denen kappa0 direkt aus der seismischer Bodenunruhe hergeleitet werden soll.}, language = {en} } @article{ZhuCottonKawaseetal.2022, author = {Zhu, Chuanbin and Cotton, Fabrice and Kawase, Hiroshi and H{\"a}ndel, Annabel and Pilz, Marco and Nakano, Kenichi}, title = {How well can we predict earthquake site response so far?}, series = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, volume = {38}, journal = {Earthquake spectra : the professional journal of the Earthquake Engineering Research Institute}, number = {2}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {8755-2930}, doi = {10.1177/87552930211060859}, pages = {1047 -- 1075}, year = {2022}, abstract = {Earthquake site responses or site effects are the modifications of surface geology to seismic waves. How well can we predict the site effects (average over many earthquakes) at individual sites so far? To address this question, we tested and compared the effectiveness of different estimation techniques in predicting the outcrop Fourier site responses separated using the general inversion technique (GIT) from recordings. Techniques being evaluated are (a) the empirical correction to the horizontal-to-vertical spectral ratio of earthquakes (c-HVSR), (b) one-dimensional ground response analysis (GRA), and (c) the square-root-impedance (SRI) method (also called the quarter-wavelength approach). Our results show that c-HVSR can capture significantly more site-specific features in site responses than both GRA and SRI in the aggregate, especially at relatively high frequencies. c-HVSR achieves a "good match" in spectral shape at similar to 80\%-90\% of 145 testing sites, whereas GRA and SRI fail at most sites. GRA and SRI results have a high level of parametric and/or modeling errors which can be constrained, to some extent, by collecting on-site recordings.}, language = {en} }