@article{WilkeO'BrienAltenbergeretal.2010, author = {Wilke, Franziska Daniela Helena and O'Brien, Patrick J. and Altenberger, Uwe and Konrad-Schmolke, Matthias and Khan, M. Ahmed}, title = {Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes}, issn = {0024-4937}, doi = {10.1016/j.lithos.2009.07.015}, year = {2010}, abstract = {Metabasites were sampled from rock series of the subducted margin of the Indian Plate, the so-called Higher Himalayan Crystalline, in the Upper Kaghan Valley, Pakistan. These vary from corona dolerites, cropping out around Saif- ul-Muluk in the south, to coesite-eclogite close to the suture zone against rocks of the Kohistan arc in the north. Bulk rock major- and trace-element chemistry reveals essentially a single protolith as the source for five different eclogite types, which differ in fabric, modal mineralogy as well as in mineral chemistry. The study of newly-collected samples reveals coesite (confirmed by in situ Raman spectroscopy) in both garnet and omphacite. All eclogites show growth of amphiboles during exhumation. Within some coesite-bearing eclogites the presence of glaucophane cores to barroisite is noted whereas in most samples porphyroblastic sodic-calcic amphiboles are rimmed by more aluminous calcic amphibole (pargasite, tschermakite, and edenite). Eclogite facies rutile is replaced by ilmenite which itself is commonly surrounded by titanite. In addition, some eclogite bodies show leucocratic segregations containing phengite, quartz, zoisite and/or kyanite. The important implication is that the complex exhumation path shows stages of initial cooling during decompression (formation of glaucophane) followed by reheating: a very similar situation to that reported for the coesite-bearing eclogite series of the Tso Morari massif, India, 450 km to the south-east.}, language = {en} } @phdthesis{Wilke2010, author = {Wilke, Franziska Daniela Helena}, title = {Quantifying crystalline exhumation in the Himalaya}, doi = {10.25932/publishup-4119}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-43138}, school = {Universit{\"a}t Potsdam}, pages = {IV, 99}, year = {2010}, abstract = {In 1915, Alfred Wegener published his hypotheses of plate tectonics that revolutionised the world for geologists. Since then, many scientists have studied the evolution of continents and especially the geologic structure of orogens: the most visible consequence of tectonic processes. Although the morphology and landscape evolution of mountain belts can be observed due to surface processes, the driving force and dynamics at lithosphere scale are less well understood despite the fact that rocks from deeper levels of orogenic belts are in places exposed at the surface. In this thesis, such formerly deeply-buried (ultra-) high-pressure rocks, in particular eclogite facies series, have been studied in order to reveal details about the formation and exhumation conditions and rates and thus provide insights into the geodynamics of the most spectacular orogenic belt in the world: the Himalaya. The specific area investigated was the Kaghan Valley in Pakistan (NW Himalaya). Following closure of the Tethyan Ocean by ca. 55-50 Ma, the northward subduction of the leading edge of India beneath the Eurasian Plate and subsequent collision initiated a long-lived process of intracrustal thrusting that continues today. The continental crust of India - granitic basement, Paleozoic and Mesozoic cover series and Permo-Triassic dykes, sills and lavas - has been buried partly to mantle depths. Today, these rocks crop out as eclogites, amphibolites and gneisses within the Higher Himalayan Crystalline between low-grade metamorphosed rocks (600-640°C/ ca. 5 kbar) of the Lesser Himalaya and Tethyan sediments. Beside tectonically driven exhumation mechanisms the channel flow model, that describes a denudation focused ductile extrusion of low viscosity material developed in the middle to lower crust beneath the Tibetan Plateau, has been postulated. To get insights into the lithospheric and crustal processes that have initiated and driven the exhumation of this (ultra-) high-pressure rocks, mineralogical, petrological and isotope-geochemical investigations have been performed. They provide insights into 1) the depths and temperatures to which these rocks were buried, 2) the pressures and temperatures the rocks have experienced during their exhumation, 3) the timing of these processes 4) and the velocity with which these rocks have been brought back to the surface. In detail, through microscopical studies, the identification of key minerals, microprobe analyses, standard geothermobarometry and modelling using an effective bulk rock composition it has been shown that published exhumation paths are incomplete. In particular, the eclogites of the northern Kaghan Valley were buried to depths of 140-100 km (36-30 kbar) at 790-640°C. Subsequently, cooling during decompression (exhumation) towards 40-35 km (17-10 kbar) and 630-580°C has been superseded by a phase of reheating to about 720-650°C at roughly the same depth before final exhumation has taken place. In the southern-most part of the study area, amphibolite facies assemblages with formation conditions similar to the deduced reheating phase indicate a juxtaposition of both areas after the eclogite facies stage and thus a stacking of Indian Plate units. Radiometric dating of zircon, titanite and rutile by U-Pb and amphibole and micas by Ar-Ar reveal peak pressure conditions at 47-48 Ma. With a maximum exhumation rate of 14 cm/a these rocks reached the crust-mantle boundary at 40-35 km within 1 Ma. Subsequent exhumation (46-41 Ma, 40-35 km) decelerated to ca. 1 mm/a at the base of the continental crust but rose again to about 2 mm/a in the period of 41-31 Ma, equivalent to 35-20 km. Apatite fission track (AFT) and (U-Th)/He ages from eclogites, amphibolites, micaschists and gneisses yielded moderate Oligocene to Miocene cooling rates of about 10°C/Ma in the high altitude northern parts of the Kaghan Valley using the mineral-pair method. AFT ages are of 24.5±3.8 to 15.6±2.1 Ma whereas apatite (U-Th)/He analyses yielded ages between 21.0±0.6 and 5.3±0.2 Ma. The southern-most part of the Valley is dominated by younger late Miocene to Pliocene apatite fission track ages of 7.6±2.1 and 4.0±0.5 Ma that support earlier tectonically and petrologically findings of a juxtaposition and stack of Indian Plate units. As this nappe is tectonically lowermost, a later distinct exhumation and uplift driven by thrusting along the Main Boundary Thrust is inferred. A multi-stage exhumation path is evident from petrological, isotope-geochemical and low temperature thermochronology investigations. Buoyancy driven exhumation caused an initial rapid exhumation: exhumation as fast as recent normal plate movements (ca. 10 cm/a). As the exhuming units reached the crust-mantle boundary the process slowed down due to changes in buoyancy. Most likely, this exhumation pause has initiated the reheating event that is petrologically evident (e.g. glaucophane rimmed by hornblende, ilmenite overgrowth of rutile). Late stage processes involved widespread thrusting and folding with accompanied regional greenschist facies metamorphism, whereby contemporaneous thrusting on the Batal Thrust (seen by some authors equivalent to the MCT) and back sliding of the Kohistan Arc along the inverse reactivated Main Mantle Thrust caused final exposure of these rocks. Similar circumstances have been seen at Tso Morari, Ladakh, India, 200 km further east where comparable rock assemblages occur. In conclusion, as exhumation was already done well before the initiation of the monsoonal system, climate dependent effects (erosion) appear negligible in comparison to far-field tectonic effects.}, language = {en} } @article{WilkeO'BrienGerdesetal.2010, author = {Wilke, Franziska Daniela Helena and O'Brien, Patrick J. and Gerdes, Axel and Timmerman, Martin Jan and Sudo, Masafumi and Khan, M. Ahmed}, title = {The multistage exhumation history of the Kaghan Valley UHP series, NW Himalaya, Pakistan from U-Pb and Ar-40/Ar- 39 ages}, issn = {0935-1221}, doi = {10.1127/0935-1221/2010/0022-2051}, year = {2010}, abstract = {Amphibole and mica Ar-40/Ar-39 ages as well as zircon, rutile and titanite U-Pb geochronology of eclogites and associated host rocks from the Higher Himalayan Crystalline Nappes (Indian Plate) in the Upper Kaghan Valley, Pakistan allow distinction of a multistage exhumation history. An Eocene age for peak-pressure metamorphism has been obtained by phengite Ar-40/Ar-39 (47.3 +/- 0.3 Ma) and zircon U-Pb (47.3 +/- 0.4 and 47.4 +/- 0.3 Ma) ages from cover and basement gneisses. A very short-lived metamorphic peak and rapid cooling is documented by an amphibole Ar-40/Ar-39 age of 46.6 +/- 0.5 Ma and a rutile U-Pb age of 44.1 +/- 1.3 Ma from eclogites. Phengite and biotite ages from cover and basement sequences metamorphosed during the Himalayan orogeny are 34.5 +/- 0.2 to 28.1 +/- 0.2 Ma whereas youngest biotites, yielding 23.6 +/- 0.1 and 21.7 +/- 0.2 Ma, probably reflect argon partial resetting. The amphibole age, together with those derived from phengite and zircon demonstrate a rate of initial exhumation of 86-143 mm/a i.e. an extremely rapid transport of the Indian Plate continental crust from ultra-high pressure (UHP) conditions back to crustal levels (47-46 Ma for transport from 140 to 40 km depth). Subsequent exhumation (46-41 Ma, 40-35 km) slowed to about 1 mm/a at the base of the continental crust but increased again later towards slightly higher exhumation rates of ca. 2 mm/a (41-34 Ma, 35- 20 km). This indicates a change from buoyancy-driven exhumation at mantle depths to compression forces related to continent-continent collision and accompanied crustal folding, thrusting and stacking that finally exposed the former deeply-buried rocks.}, language = {en} } @article{WilkeVasquezWiersbergetal.2012, author = {Wilke, Franziska Daniela Helena and Vasquez, Monica and Wiersberg, Thomas and Naumann, Rudolf and Erzinger, J{\"o}rg}, title = {On the interaction of pure and impure supercritical CO2 with rock forming minerals in saline aquifers: An experimental geochemical approach}, series = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, volume = {27}, journal = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, number = {8}, publisher = {Elsevier}, address = {Oxford}, issn = {0883-2927}, doi = {10.1016/j.apgeochem.2012.04.012}, pages = {1615 -- 1622}, year = {2012}, abstract = {The aim of this experimental study was to evaluate and compare the geochemical impact of pure and impure CO2 on rock forming minerals of possible CO2 storage reservoirs. This geochemical approach takes into account the incomplete purification of industrial captured CO2 and the related effects during injection, and provides relevant data for long-term storage simulations of this specific greenhouse gas. Batch experiments were conducted to investigate the interactions of supercritical CO2, brine and rock-forming mineral concentrates (albite, microcline, kaolinite, biotite, muscovite, calcite, dolomite and anhydrite) using a newly developed experimental setup. After up to 42 day (1000 h) experiments using pure and impure supercritical CO2 the dissolution and solution characteristics were examined by XRD, XRF, SEM and EDS for the solid, and ICP-MS and IC for the fluid reactants, respectively. Experiments with mixtures of supercritical CO2 (99.5 vol.\%) and SO2 or NO2 impurities (0.5 vol.\%) suggest the formation of H2SO4 and HNO3, reflected in pH values between 1 and 4 for experiments with silicates and anhydrite and between 5 and 6 for experiments with carbonates. These acids should be responsible for the general larger amount of cations dissolved from the mineral phases compared to experiments using pure CO2. For pure CO2 a pH of around 4 was obtained using silicates and anhydrite, and 7-8 for carbonates. Dissolution of carbonates was observed after both pure and impure CO2 experiments. Anhydrite was corroded by approximately 50 wt.\% and gypsum precipitated during experiments with supercritical CO2 + NO2. Silicates do not exhibit visible alterations during all experiments but released an increasing amount of cations in the reaction fluid during experiments with impure CO2. Nonetheless, precipitated secondary carbonates could not be identified.}, language = {en} } @article{WilkeSobelO'Brienetal.2012, author = {Wilke, Franziska Daniela Helena and Sobel, Edward and O'Brien, Patrick J. and Stockli, Daniel F.}, title = {Apatite fission track and (U-Th)/He ages from the Higher Himalayan Crystallines, Kaghan Valley, Pakistan: Implications for an Eocene Plateau and Oligocene to Pliocene exhumation}, series = {Journal of Asian earth sciences}, volume = {59}, journal = {Journal of Asian earth sciences}, number = {3}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-9120}, doi = {10.1016/j.jseaes.2012.06.014}, pages = {14 -- 23}, year = {2012}, abstract = {Apatite fission track and apatite and zircon (U-Th)/He ages were obtained from high- and ultra high-pressure rocks from the Kaghan Valley, Pakistan. Four samples from the high altitude northern parts of the valley yielded apatite fission track ages between 24.5 +/- 3.7 and 15.6 +/- 2.1 Ma and apatite (U-Th)/He ages between 21.0 +/- 0.6 and 5.3 +/- 0.2 Ma. These data record cooling of the formerly deeply-subducted high-grade metamorphic rocks induced by denudation and exhumation consistent with extension and back sliding along the reactivated, normal-acting Main Mantle Thrust. Overlap at around 10 Ma between fission track and (U-Th)/He ages is recognised at one location (Besal) showing that fast cooling occurred due to brittle reactivation of a former thrust fault. Widespread Miocene cooling is also evident in adjacent areas to the west (Deosai Plateau, Tso Moran), most likely related to uplift and unroofing linked to continued underplating of the Indian lower crust beneath Ladakh and Kohistan in the Late Eocene to Oligocene. In the southernmost part of the study area, near Naran, two significantly younger Late Miocene to Pliocene apatite fission track ages of 7.6 +/- 2.1 to 4.0 +/- 0.5 Ma suggest a spatial and temporal separation of exhumation processes. These younger ages are best explained by enhanced Late Miocene uplift and erosion driven by thrusting along the Main Boundary Thrust.}, language = {en} } @article{WilkeSchmidtZiemann2015, author = {Wilke, Franziska Daniela Helena and Schmidt, Alexander and Ziemann, Martin Andreas}, title = {Subduction, peak and multi-stage exhumation metamorphism: Traces from one coesite-bearing eclogite, Tso Moran, western Himalaya}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {231}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos2015.06.007}, pages = {77 -- 91}, year = {2015}, abstract = {Ultrahigh-pressure (UHP), coesite-bearing edogites in the Himalaya have been documented from the Kaghan Valley in Pakistan and the Tso Morani area in northwest India. These complexes are part of the northern edge of the Indian plate that has been subducted to, and metamorphosed at, mantle depths of more than 100 km before being exhumed. Both UHP complexes are located today directly adjacent to the Indus-Tsangpo suture zone and are not separated by non-metamorphosed sequences of Tethyan sediments from the Asian margin. Herein, we present new data for one fresh coesite-bearing eclogite from the Tso Moran massif. Therein, garnets are zoned reflecting their growth during prograde and peak metamorphism and showing a thin retrograde overgrowth. Inclusions can be directly correlated to the compositional zoning and are seen as either relicts of the protolith mineral paragenesis and as "snap shots" of the mineral paragenesis during subduction and under peak conditions. Rare earth element concentrations (REE) were obtained for garnet, mineral inclusions in garnet and matrix minerals. The REE pattern in garnet reflects a sequential change in matrix minerals and their proportions due to net transfer reactions during subduction and peak metamorphism. Using conventional geothermobarometry, a peak pressure of ca. 44-48 kbar at 560-760 degrees C followed by an S-shaped exhumation curve has been deduced. Gibbs free energy minimization modelling was used to supplement our analytical findings. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{WilkeViethHillebrandNaumannetal.2015, author = {Wilke, Franziska Daniela Helena and Vieth-Hillebrand, Andrea and Naumann, Rudolf and Erzinger, J{\"o}rg and Horsfield, Brian}, title = {Induced mobility of inorganic and organic solutes from black shales using water extraction: Implications for shale gas exploitation}, series = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, volume = {63}, journal = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0883-2927}, doi = {10.1016/j.apgeochem.2015.07.008}, pages = {158 -- 168}, year = {2015}, abstract = {The study reported here evaluates the degree to which metals, salt anions and organic compounds are released from shales by exposure to water, either in its pure form or mixed with additives commonly employed during shale gas exploitation. The experimental conditions used here were not intended to simulate the exploitation process itself, but nevertheless provided important insights into the effects additives have on solute partition behaviour under oxic to sub-oxic redox conditions. In order to investigate the mobility of major (e.g. Ca, Fe) and trace (e.g. As, Cd, Co, Mo, Pb, U) elements and selected organic compounds, we performed leaching tests with black shale samples from Bornholm, Denmark and Lower Saxony, Germany. Short-term experiments (24 h) were carried out at ambient pressure and temperatures of 100 degrees C using five different lab-made stimulation fluids. Two long-term experiments under elevated pressure and temperature conditions at 100 degrees C/100 bar were performed lasting 6 and 2 months, respectively, using a stimulation fluid containing commercially-available biocide, surfactant, friction reducer and clay stabilizer. Our results show that the amount of dissolved constituents at the end of the experiment is independent of the pH of the stimulation fluid but highly dependent on the composition of the black shale and the buffering capacity of specific components, namely pyrite and carbonates. Shales containing carbonates buffer the solution at pH 7-8. Sulphide minerals (e.g. pyrite) become oxidized and generate sulphuric acid leading to a pH of 2-3. This low pH is responsible for the overall much larger amount of cations dissolved from shales containing pyrite but little to no carbonate. The amount of elements released into the fluid is also dependent on the residence time, since as much as half of the measured 23 elements show highest concentrations within four days. Afterwards, the concentration of most of the elemental species decreased pointing to secondary precipitations. Generally, in our experiments less than 15\% of each analysed element contained in the black shale was mobilised into the fluid. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{WunderKutzschbachHosseetal.2018, author = {Wunder, Bernd and Kutzschbach, Martin and Hosse, Luisa and Wilke, Franziska Daniela Helena and Schertl, Hans-Peter and Chopin, Christian}, title = {Synthetic B-[4]-bearing dumortierite and natural B-[4]-free magnesiodumortierite from the Dora-Maira Massif}, series = {European journal of mineralogy}, volume = {30}, journal = {European journal of mineralogy}, number = {3}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0935-1221}, doi = {10.1127/ejm/2018/0030-2742}, pages = {471 -- 483}, year = {2018}, abstract = {Dumortierite was synthesized in piston-cylinder experiments at 2.5-4.0 GPa, 650-700 degrees C in the Al2O3 -B2O3-SiO2-H2O (ABSH) system. Electron-microprobe (EMP) analyses reveal significant boron-excess (up to 0.26 B-[4] per formula unit, pfu) and silicon-deficiency relative to the ideal anhydrous dumortierite stoichiometry Al7BSi3O18 . The EMP data in conjunction with results from single-crystal Raman spectroscopy and powder X-ray diffraction provide evidence that silicon at the tetrahedral site is replaced by excess boron via the substitution Si-[4] <--> B-[4] + H. The Raman spectrum of synthetic dumortierite in the frequency region 2000 4000 cm(-1) comprises eight bands, of which six are located at frequencies below 3400 cm(-1). This points to strong hydrogen bonding, most likely O2-H center dot center dot center dot O7 and O7-H center dot center dot center dot O2, arising from a high number of octahedral vacancies at the All site and substitution of trivalent Al3+ and B3+ for Si4+ at Si1 and Si2 sites, causing decreasing acceptor-donor distances and lower incident valence at the acceptor oxygen. Contrary to the synthetic high-pressure ABSH-dumortierite, magnesiodumortierite from the Dora-Maira Massif, which is assumed to have formed at similar conditions (2.5-3.0 GPa, 700 degrees C), does not show any B-excess. Tourmaline shows an analogous behaviour in that magnesium-rich (e.g., dravitic) tourmaline formed at high pressure shows no or only minor amounts of tetrahedral boron, whereas natural aluminum-rich tourmaline and synthetic olenitic tourmaline formed at high pressures can incorporate significant amounts of tetrahedral boron. Two mechanisms might account for this discrepancy: (i) Structural avoidance of Mg-[6]-(OR3+)-R-[4] configurations in magnesiodumortierite due to charge deficieny at the oxygens O2 and O7 and strong local distortion of M1 due to decreased O2-O7 bond length, and/or (ii) decreasing fluid mobility of boron in Al-rich systems at high pressures.}, language = {en} } @article{WilkeSchettlerViethHillebrandetal.2018, author = {Wilke, Franziska Daniela Helena and Schettler, Georg and Vieth-Hillebrand, Andrea and K{\"u}hn, Michael and Rothe, Heike}, title = {Activity concentrations of U-238 and Ra-226 in two European black shales and their experimentally-derived leachates}, series = {Journal of Environmental Radioactivity}, volume = {190}, journal = {Journal of Environmental Radioactivity}, publisher = {Elsevier}, address = {Oxford}, issn = {0265-931X}, doi = {10.1016/j.jenvrad.2018.05.005}, pages = {122 -- 129}, year = {2018}, abstract = {We performed leaching tests at elevated temperatures and pressures with an Alum black shale from Bomholm, Denmark and a Posidonia black shale from Lower Saxony, Germany. The Alum shale is a carbonate free black shale with pyrite and barite, containing 74.4 mu g/g U. The Posidonia shales is a calcareous shale with pyrite but without detectable amounts of barite containing 3.6 mu g/g U. Pyrite oxidized during the tests forming sulfuric acid which lowered the pH on values between 2 and 3 of the extraction fluid from the Alum shale favoring a release of U from the Alum shale to the fluid during the short-term and in the beginning of the long-term experiments. The activity concentration of U-238 is as high as 23.9 mBq/ml in the fluid for those experiments. The release of U and Th into the fluid is almost independent of pressure. The amount of uranium in the European shales is similar to that of the Marcellus Shale in the United States but the daughter product of U-238, the Ra-226 activity concentrations in the experimentally derived leachates from the European shales are quite low in comparison to that found in industrially derived flowback fluids from the Marcellus shale. This difference could mainly be due to missing Cl in the reaction fluid used in our experiments and a lower fluid to solid ratio in the industrial plays than in the experiments due to subsequent fracking and minute cracks from which Ra can easily be released.}, language = {en} } @article{BsdokAltenbergerConchaPerdomoetal.2020, author = {Bsdok, Barbara and Altenberger, Uwe and Concha-Perdomo, Ana Elena and Wilke, Franziska Daniela Helena and Gil-Rodriguez, J. G.}, title = {The Santa Rosa de Viterbo meteorite, Colombia}, series = {Journal of South American earth sciences}, volume = {104}, journal = {Journal of South American earth sciences}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0895-9811}, doi = {10.1016/j.jsames.2020.102779}, pages = {8}, year = {2020}, abstract = {Undifferentiated meteorites, like primitive chondrites, can contain presolar and solar nebula materials which would provide information about the origin and initial conditions of the solar system, whereas differentiated meteorites like iron meteorites, can show early phases of planetary accretion. They also provide the possibility to receive information about core properties and planetary bodies. In addition to the gain in such fundamental scientific knowledge both types are of interest for the exploration of critical raw materials (CRMs) and precious elements. The Santa Rosa de Viterbo meteorite shower, discovered 1810 in the Boyaca province of Colombia, represents a typical iron-nickel meteorite. The present study presents new structural, textural and geochemical results of one fragment of this meteorite, using reflecting microscopy, electron probe micro analyses (EPMA) and electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The present study presents trace element concentrations of the meteorite's minerals for the first time. The sample is dominated by kamacite (alpha-FeNi). Schreibersite (FeNi3P), taenite (gamma-FeNi) and plessite (mixture of kamacite and taenite) are minor constituents. The occurrence of cohenite ((Fe,Ni,Co)(3)C) and troilite (FeS) are likely. The meteorite sample contains classical Neuman bands passing through kamacite and frequent Widmanstadtten pattern. The bandwidth of kamacite defines the meteorite as finest octahedrite. Geochemically, it is characterized as a "Type IC meteorite". While improving the characterization and classification of the Santa Rosa de Viterbo Iron Meteorite, notable concentrations of Au (>400 ppm) and Ge (>230 ppm) alongside major elements such as Fe, Ni and Co in the bulk composition of that meteorite, were proven. Major and rock-forming minerals such as kamacite and taenite incorporate hundreds of ppm of Ge whereas schreibersite, itself a minor component in that particular meteorite, is the major source for Au (>1400 ppm). In kamacite and taenite also Ir, Pd and Ga were found in minor amounts. Nano-scale inclusions or atomic clusters called nano-nuggets may have been responsible for the high concentrations of Au, Ir, Pd and Ga. Raman and Laser-induced plasma spectroscopes installed in in space probes seems suitable exploration methods for Fe-Ni meteorites, containing Ni-concentrations > 5.8 wt\% defining the meteorite as octaedrites.}, language = {en} }