@article{HerzschuhWinterWuennemannetal.2006, author = {Herzschuh, Ulrike and Winter, Katja and W{\"u}nnemann, Bernd and Li, Shijie}, title = {A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {154}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Pergamon Press}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2006.02.005}, pages = {113 -- 121}, year = {2006}, abstract = {A 741-cm-long laminated sediment core, covering the last 10,800 years was collected from Lake Zigetang, central Tibetan Plateau (90.9 degrees E, 32.0 degrees N, 4560m a.s.l.), and analysed palynologically at 69 horizons. Biome reconstruction suggests a dominance of temperate steppe vegetation (mainly Artemisia and Poaceae) on the central Tibetan Plateau during the first half of the Holocene (10.8-4.4 cal. ka BP), while alpine steppes with desert elements (mainly Cyperaceae, Poaceae, Chenopodiaceae, and characteristic high-alpine herb families) tend to dominate the second half (4.4-0 cal. ka BP). The Artemisia/Cyperaceae ratio-a semi-quantitative measure for summer temperature-indicates a general cooling trend throughout the Holocene. Dense temperate steppe vegetation and maximum desert plant withdrawal, however, indicate that a suitable balance of wet and warm conditions for optimum vegetation growth likely occurred during the middle Holocene (7.3-4.4 cal. ka BP). Severe Early Holocene cold events have been reconstructed for 8.7-8.3 and similar to 7.4 cal. ka BP. (c) 2006 Elsevier Ltd and INQUA. All rights reserved.}, language = {en} } @article{OpitzWuennemannAichneretal.2012, author = {Opitz, Stephan and W{\"u}nnemann, Bernd and Aichner, Bernhard and Dietze, Elisabeth and Hartmann, Kai and Herzschuh, Ulrike and IJmker, Janneke and Lehmkuhl, Frank and Li, Shijie and Mischke, Steffen and Plotzki, Anna and Stauch, Georg and Diekmann, Bernhard}, title = {Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {337}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, number = {23}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2012.04.013}, pages = {159 -- 176}, year = {2012}, abstract = {Sediments of Lake Donggi Cona on the northeastern Tibetan Plateau were studied to infer changes in the lacustrine depositional environment, related to climatic and non-climatic changes during the last 19 kyr. The lake today fills a 30x8 km big and 95 m deep tectonic basin, associated with the Kunlun Fault. The study was conducted on a sediment-core transect through the lake basin, in order to gain a complete picture of spatio-temporal environmental change. The recovered sediments are partly finely laminated and are composed of calcareous muds with variable amounts of carbonate micrite, organic matter, detrital silt and clay. On the basis of sedimentological, geochemical, and mineralogical data up to five lithological units (LU) can be distinguished that document distinct stages in the development of the lake system. The onset of the lowermost LU with lacustrine muds above basal sands indicates that lake level was at least 39 m below the present level and started to rise after 19 ka, possibly in response to regional deglaciation. At this time, the lacustrine environment was characterized by detrital sediment influx and the deposition of siliciclastic sediment. In two sediment cores, upward grain-size coarsening documents a lake-level fall after 13 cal ka BP, possibly associated with the late-glacial Younger Dryas stadial. From 11.5 to 4.3 cal ka BP, grain-size fining in sediment cores from the profundal coring sites and the onset of lacustrine deposition at a litoral core site (2 m water depth) in a recent marginal bay of Donggi Cona document lake-level rise during the early to mid-Holocene to at least modern level. In addition, high biological productivity and pronounced precipitation of carbonate micrites are consistent with warm and moist climate conditions related to an enhanced influence of summer monsoon. At 4.3 cal ka BP the lake system shifted from an aragonite- to a calcite-dominated system, indicating a change towards a fully open hydrological lake system. The younger clay-rich sediments are moreover non-laminated and lack any diagenetic sulphides, pointing to fully ventilated conditions, and the prevailing absence of lake stratification. This turning point in lake history could imply either a threshold response to insolation-forced climate cooling or a response to a non-climatic trigger, such as an erosional event or a tectonic pulse that induced a strong earthquake, which is difficult to decide from our data base.}, language = {en} } @unpublished{MischkeWuennemannAppel2013, author = {Mischke, Steffen and W{\"u}nnemann, Bernd and Appel, Erwin}, title = {Proxies for quaternary monsoon reconstruction on the tibetan plateau}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {313}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2013.10.001}, pages = {1 -- 2}, year = {2013}, language = {en} } @article{WangZhangWuennemannetal.2015, author = {Wang, Rong and Zhang, Yongzhan and W{\"u}nnemann, Bernd and Biskaborn, Boris and Yin, He and Xia, Fei and Zhou, Lianfu and Diekmann, Bernhard}, title = {Linkages between Quaternary climate change and sedimentary processes in Hala Lake, northern Tibetan Plateau, China}, series = {Journal of Asian earth sciences}, volume = {107}, journal = {Journal of Asian earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-9120}, doi = {10.1016/j.jseaes.2015.04.008}, pages = {140 -- 150}, year = {2015}, abstract = {Profundal lake sediment cores are often interpreted in line with diverse and detailed sedimentological processes to infer paleoenvironmental conditions. The effects of frozen lake surfaces on terrigenous sediment deposition and how climate changes on the Tibetan Plateau are reflected in these lakes, however, is seldom discussed. A lake sediment core from Hala Lake (590 km(2)), northeastern Tibetan Plateau spanning the time interval from the Last Glacial Maximum to the present was investigated using high-resolution grain-size composition of lacustrine deposits. Seismic analysis along a north-south profile across the lake was used to infer the sedimentary setting within the lake basin. Periods of freezing and melting processes on the lake surface were identified by MODIS (MOD10A1) satellite data. End-member modeling of the grain size distribution allowed the discrimination between lacustrine, eolian and fluvial sediments. The dominant clay sedimentation (slack water type) during the global Last Glacial Maximum (LGM) reflects ice interceptions in long cold periods, in contrast to abundant eolian input during abrupt cold events. Therefore, fluvial and slack water sedimentation processes can indicate changes in the local paleoclimate during periods of the lake being frozen, when eolian input was minor. Inferred warm (i.e., similar to 22.7 and 19.5 cal. ka BP) and cold (i.e., similar to 11-9 and 3-1.5 cal. ka BP) spells have significant environmental impacts, not only in the regional realm, but they are also coherent with global-scale climate events. The eolian input generally follows the trend of the mid-latitude westerly wind dynamics in winter, contributing medium-sized sand to the lake center, deposited within the ice cover during icing and melting phases. Enhanced input was dominant during the Younger Dryas, Heinrich Event 1 and at around 8.2 ka, equivalent to the well-known events of the North Atlantic realm. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} }