@article{PalmvanSchaikSchroederEsselbach2013, author = {Palm, Juliane and van Schaik, N. Loes M. B. and Schr{\"o}der-Esselbach, Boris}, title = {Modelling distribution patterns of anecic, epigeic and endogeic earthworms at catchment-scale in agro-ecosystems}, series = {Pedobiologia : international journal of soil biology}, volume = {56}, journal = {Pedobiologia : international journal of soil biology}, number = {1}, publisher = {Elsevier}, address = {Jena}, issn = {0031-4056}, doi = {10.1016/j.pedobi.2012.08.007}, pages = {23 -- 31}, year = {2013}, abstract = {Species distribution models are useful for identifying driving environmental factors that determine earthworm distributions as well as for predicting earthworm distribution patterns and abundances at different scales. However, due to large efforts in data acquisition, studies on larger scales are rare and often focus on single species or earthworms in general. In this study, we use boosted regression tree models (BRTs) for predicting the distribution of the three functional earthworm types, i.e. anecics, endogeics and epigeics, in an agricultural area in Baden-Wurttemberg (Southwest Germany). First, we predicted presence and absence and later earthworm abundances, considering predictors depicting land management, topography, and soil conditions as well as biotic interaction by using the abundance of the other functional earthworm types. The final presence-absence models performed reasonably well, with explained deviances between 24 and 51\% after crossvalidation. Models for abundances of anecics and endogeics were less successful, since the high small-scale variability and patchiness in earthworm abundance influenced the representativeness of the field measurements. This resulted in a significant model uncertainty, which is practically very difficult to overcome with earthworm sampling campaigns at the catchment scale. Results showed that management practices (i.e. disturbances), topography, soil conditions, and biotic interactions with other earthworm groups are the most relevant predictors for spatial distribution (incidence) patterns of all three functional groups. The response curves and contributions of predictors differ for the three functional earthworm types. Epigeics are also controlled by topographic features, endogeics by soil parameters.}, language = {en} } @article{vanSchaikPalmKlausetal.2014, author = {van Schaik, Loes and Palm, Juliane and Klaus, Julian and Zehe, Erwin and Schroeder, Boris}, title = {Linking spatial earthworm distribution to macropore numbers and hydrological effectiveness}, series = {Ecohydrology : ecosystems, land and water process interactions, ecohydrogeomorphology}, volume = {7}, journal = {Ecohydrology : ecosystems, land and water process interactions, ecohydrogeomorphology}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1936-0584}, doi = {10.1002/eco.1358}, pages = {401 -- 408}, year = {2014}, abstract = {Due to its high spatial and temporal variability, preferential flow is difficult to measure and quantify. Earthworms create macropores that provide common pathways for preferential flow. Therefore in this article, we link earthworm abundance to macropore numbers and hydrological effectiveness, with the future aim to use species distribution models of earthworms for the spatial parameterization of preferential flow. Earthworms are generally categorized into three ecological types with varying burrowing behaviour, resulting in a different impact on soil hydrological processes. Therefore, we studied the relationships between the abundance of the earthworm ecological types and macropores of different size classes and in different soil depths. The abundance and biomass of earthworms were well correlated to different sizes of macropores in different soil depths. This is mainly the case for the larger, vertically oriented macropores (>6mm diameter), which are generally connected to the soil surface and hydrologically most effective. The correlation of total earthworm biomass and macropores ranges from 072 to 089 for different soil depths. Although there is quite some variation in infiltration patterns, infiltration from macropores into the matrix is profile-specific, as it varies strongly between profiles, but not within one profile. Macropore coating seems to have a larger effect on this macropore matrix interaction than the soil physical properties of the matrix. Although the amount of macropores and their effectiveness are clearly related to the earthworm distribution, the variation in infiltration from macropores to soil matrix should be further studied.}, language = {en} } @article{KlausZeheElsneretal.2014, author = {Klaus, Julian and Zehe, Erwin and Elsner, Martin and Palm, Juliane and Schneider, Dorothee and Schroeder, Boris and Steinbeiss, Sibylle and van Schaik, Loes and West, Stephanie}, title = {Controls of event-based pesticide leaching in natural soils: A systematic study based on replicated field scale irrigation experiments}, series = {Journal of hydrology}, volume = {512}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2014.03.020}, pages = {528 -- 539}, year = {2014}, abstract = {Tile drains strongly influence the water cycle in agricultural catchment in terms of water quantity and quality. The connectivity of preferential flow to tile drains can create shortcuts for rapid transport of solutes into surface waters. The leaching of pesticides can be linked to a set of main factors including, rainfall characteristics, soil moisture, chemical properties of the pesticides, soil properties, and preferential flow paths. The connectivity of the macropore system to the tile drain is crucial for pesticide leaching. Concurring influences of the main factors, threshold responses and the role of flow paths are still poorly understood. The objective of this study is to investigate these influences by a replica series of three irrigation experiments on a tile drain field site using natural and artificial tracers together with applied pesticides. We found a clear threshold behavior in the initialization of pesticide transport that was different between the replica experiments. Pre-event soil water contributed significantly to the tile drain flow, and creates a flow path for stored pesticides from the soil matrix to the tile drain. This threshold is controlled by antecedent soil moisture and precipitation characteristics, and the interaction between the soil matrix and preferential flow system. Fast transport of pesticides without retardation and the remobilization could be attributed to this threshold and the interaction between the soil matrix and the preferential flow system. Thus, understanding of the detailed preferential flow processes clearly enhances the understanding of pesticide leaching on event and long term scale, and can further improve risk assessment and modeling approaches. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{vanSchaikPalmKlausetal.2016, author = {van Schaik, Loes and Palm, Juliane and Klaus, Julian and Zehe, Erwin and Schroeder, Boris}, title = {Potential effects of tillage and field borders on within-field spatial distribution patterns of earthworms}, series = {Biological chemistry}, volume = {228}, journal = {Biological chemistry}, publisher = {De Gruyter}, address = {Berlin}, issn = {0167-8809}, doi = {10.1016/j.agee.2016.05.015}, pages = {82 -- 90}, year = {2016}, abstract = {Earthworms play a key role in regulating soil ecosystem functions and services. The small scale variability in earthworm abundance is often found to be very high, which is a problem for representative sampling of earthworm abundance at larger scales. In agricultural fields, soil tillage may influence both the average earthworm abundance as well as the spatial distribution of earthworms. Therefore we studied the abundance and spatial pattern of the different ecological earthworm types, i.e. endogeic, epigeic and anecic earthworms, in four agricultural fields differing in soil tillage (two fields with regular tillage and two fields with conservation tillage) and surrounding land use (other cropped fields or apple orchard and forest). To this aim we sampled earthworms on a total number of 430 plots (50 x 50 cm(2)) using a combination of extraction with mustard solution and hand sorting. The results exhibit large differences in average earthworm abundance between the four fields. Only one of the two fields with conservation tillage had a comparatively very high overall abundance of earthworms. Furthermore, we found a high spatial variability of earthworms within the field scale often exhibiting a patchy distribution. We detected a trend of decreasing earthworm abundances from the field border into the field for different earthworm groups on each of the fields. In three fields with low total earthworm abundance (and only very few epigeic earthworms) there was a short scale autocorrelation with ranges varying strongly for the endogeic earthworms (37.9 m, 62.6 m, and 85.2 m) compared to anecic earthworms (19.8 m, 22.8 m, and 27.4 m). In the field with high abundance, after trend removal, the variogram models for anecic and endogeic earthworms were rejected based on their negative explained variances. On this field, we found only a short scale autocorrelation for the epigeic earthworms with a range of 143 m. Based on these results it seems that ploughing alone cannot explain the differences in abundance and range of autocorrelation found on the four fields. The trend of strongly decreasing earthworm abundance from the field border into the field in the one field with high abundance does indicate that the field border or surrounding land use may also influence the recolonization of fields, but more research is required to provide further evidence for this hypothesis. Due to the very different patterns of earthworm distributions in the fields it remains difficult to recommend an optimal number and distance of samples to obtain a representative earthworm abundance for the field scale. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} }