@article{SteinLiuCamelbeecketal.2017, author = {Stein, Seth and Liu, Mian and Camelbeeck, Thierry and Merino, Miguel and Landgraf, Angela and Hintersberger, Esther and K{\"u}bler, Simon}, title = {Challenges in assessing seismic hazard in intraplate Europe}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, editor = {Landgraf, Angelika and K{\"u}bler, Simon and Hintersberger, Esther and Stein, Seth}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.7}, pages = {13 -- 28}, year = {2017}, abstract = {Intraplate seismicity is often characterized by episodic, clustered and migrating earthquakes and extended after-shock sequences. Can these observations - primarily from North America, China and Australia - usefully be applied to seismic hazard assessment for intraplate Europe? Existing assessments are based on instrumental and historical seismicity of the past c. 1000 years, as well as some data for active faults. This time span probably fails to capture typical large-event recurrence intervals of the order of tens of thousands of years. Palaeoseismology helps to lengthen the observation window, but preferentially produces data in regions suspected to be seismically active. Thus the expected maximum magnitudes of future earthquakes are fairly uncertain, possibly underestimated, and earthquakes are likely to occur in unexpected locations. These issues particularly arise in considering the hazards posed by low-probability events to both heavily populated areas and critical facilities. For example, are the variations in seismicity (and thus assumed seismic hazard) along the Rhine Graben a result of short sampling or are they real? In addition to a better assessment of hazards with new data and models, it is important to recognize and communicate uncertainties in hazard estimates. The more users know about how much confidence to place in hazard maps, the more effectively the maps can be used.}, language = {en} } @article{LandgrafKueblerHintersbergeretal.2017, author = {Landgraf, Angela and K{\"u}bler, Simon and Hintersberger, Esther and Stein, Seth}, title = {Active tectonics, earthquakes and palaeoseismicity in slowly deforming continents}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, number = {1}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.13}, pages = {1 -- 12}, year = {2017}, language = {en} } @article{KueblerStreichLuecketal.2017, author = {K{\"u}bler, Simon and Streich, R. and L{\"u}ck, Erika and Hoffmann, M. and Friedrich, A. M. and Strecker, Manfred}, title = {Active faulting in a populated low-strain setting (Lower Rhine Graben, Central Europe) identified by geomorphic, geophysical and geological analysis}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.11}, pages = {127 -- 146}, year = {2017}, abstract = {The Lower Rhine Graben (Central Europe) is a prime example of a seismically active low-strain rift zone characterized by pronounced anthropogenic and climatic overprint of structures, and long recurrence intervals of large earthquakes. These factors render the identification of active faults and surface ruptures difficult. We investigated two fault scarps in the Lower Rhine Graben, to decipher their structural character, offset and potential seismogenic origin. Both scarps were modified by anthropogenic activity. The Hemmerich site lies c. 20 km SW of Cologne, along the Erft Fault. The Untermaubach site lies SW of Duren, where the Schafberg Fault projects into the Rur River valley. At the Hemmerich site, geomorphic and geophysical data, as well as exploratory coring reveal evidence of repeated normal faulting. Geophysical analysis and palaeoseismological excavation at the Untermaubach site reveal a complex fault zone in Holocene gravels characterized by subtle gravel deformation. Differentiation of tectonic and fluvial features was only possible with trenching, because fault structures and grain sizes of the sediments were below the resolution of the geophysical data. Despite these issues, our investigation demonstrates that valuable insight into past earthquakes and seismogenic deformation in a low-strain environment can be revealed using a multidisciplinary approach.}, language = {en} } @article{KueblerFriedrichGoldetal.2018, author = {K{\"u}bler, Simon and Friedrich, Anke M. and Gold, Ryan D. and Strecker, Manfred}, title = {Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany}, series = {International journal of earth sciences}, volume = {107}, journal = {International journal of earth sciences}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-017-1510-9}, pages = {571 -- 585}, year = {2018}, abstract = {Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Duren earthquake (M (L) 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 +/- 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Duren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault as potentially active. Such information would result in an increase of the number of potentially active faults that contribute to seismic hazards of intracontinental regions.}, language = {en} }