@article{FernandoDrescherDeubeletal.2018, author = {Fernando, Raquel and Drescher, Cathleen and Deubel, Stefanie and Jung, Tobias and Ost, Mario and Klaus, Susanne and Grune, Tilman and Castro, Jose Pedro}, title = {Low proteasomal activity in fast skeletal muscle fibers is not associated with increased age-related oxidative damage}, series = {Experimental gerontology}, volume = {117}, journal = {Experimental gerontology}, publisher = {Elsevier}, address = {Oxford}, issn = {0531-5565}, doi = {10.1016/j.exger.2018.10.018}, pages = {45 -- 52}, year = {2018}, abstract = {The skeletal muscle is a crucial tissue for maintaining whole body homeostasis. Aging seems to have a disruptive effect on skeletal muscle homeostasis including proteostasis. However, how aging specifically impacts slow and fast twitch fiber types remains elusive. Muscle proteostasis is largely maintained by the proteasomal system. Here we characterized the proteasomal system in two different fiber types, using a non-sarcopenic aging model. By analyzing the proteasomal activity and amount, as well as the polyubiquitinated proteins and the level of protein oxidation in Musculus soleus (Sol) and Musculus extensor digitorum longus (EDL), we found that the slow twitch Sol muscle shows an overall higher respiratory and proteasomal activity in young and old animals. However, especially during aging the fast twitch EDL muscle reduces protein oxidation by an increase of antioxidant capacity. Thus, under adaptive non-sarcopenic conditions, the two fibers types seem to have different strategies to avoid age-related changes.}, language = {en} } @article{FranzOstOttenetal.2018, author = {Franz, Kristina and Ost, Mario and Otten, Lindsey and Herpich, Catrin and Coleman, Verena and Endres, Anne-Sophie and Klaus, Susanne and M{\"u}ller-Werdan, Ursula and Norman, Kristina}, title = {Higher serum levels of fibroblast growth factor 21 in old patients with cachexia}, series = {Nutrition : the international journal of applied and basic nutritional sciences}, volume = {63-64}, journal = {Nutrition : the international journal of applied and basic nutritional sciences}, publisher = {Elsevier}, address = {New York}, issn = {0899-9007}, doi = {10.1016/j.nut.2018.11.004}, pages = {81 -- 86}, year = {2018}, abstract = {Objective: Fibroblast growth factor (FGF)21 is promptly induced by short fasting in animal models to regulate glucose and fat metabolism. Data on FGF21 in humans are inconsistent and FGF21 has not yet been investigated in old patients with cachexia, a complex syndrome characterized by inflammation and weight loss. The aim of this study was to explore the association of FGF21 with cachexia in old patients compared with their healthy counterparts. Methods: Serum FGF21 and its inactivating enzyme fibroblast activation protein (FAP)-cc were measured with enzyme-linked immunoassays. Cachexia was defined as >= 5\% weight loss in the previous 3 mo and concurrent anorexia (Council on Nutrition appetite questionnaire). Results: We included 103 patients with and without cachexia (76.9 +/- 5.2 y of age) and 56 healthy controls (72.9 +/- 5.9 y of age). Cachexia was present in 16.5\% of patients. These patients had significantly higher total FGF21 levels than controls (952.1 +/- 821.3 versus 525.2 +/- 560.3 pg/mL; P= 0.012) and the lowest FGF21 levels (293.3 +/- 150.9 pg/mL) were found in the control group (global P < 0.001). Although FAP-alpha did not differ between the three groups (global P = 0.082), bioactive FGF21 was significantly higher in patients with cachexia (global P = 0.002). Risk factor-adjusted regression analyses revealed a significant association between cachexia and total ((beta = 649.745 pg/mL; P < 0.001) and bioactive FGF21 (beta = 393.200 pg/mL; P <0.001), independent of sex, age, and body mass index. Conclusions: Patients with cachexia exhibited the highest FGF21 levels. Clarification is needed to determine whether this is an adaptive response to nutrient deprivation in disease-related cachexia or whether the increased FGF21 values contribute to the catabolic state. (C) 2018 Elsevier Inc. All rights reserved.}, language = {en} }