@article{WippertRectorKuhnetal.2017, author = {Wippert, Pia-Maria and Rector, Michael V. and Kuhn, Gisela and Wuertz-Kozak, Karin}, title = {Stress and Alterations in Bones}, series = {Frontiers in endocrinology}, volume = {8}, journal = {Frontiers in endocrinology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-2392}, doi = {10.3389/fendo.2017.00096}, pages = {7}, year = {2017}, abstract = {Decades of research have demonstrated that physical stress (PS) stimulates bone remodeling and affects bone structure and function through complex mechanotransduction mechanisms. Recent research has laid ground to the hypothesis that mental stress (MS) also influences bone biology, eventually leading to osteoporosis and increased bone fracture risk. These effects are likely exerted by modulation of hypothalamic-pituitary-adrenal axis activity, resulting in an altered release of growth hormones, glucocorticoids and cytokines, as demonstrated in human and animal studies. Furthermore, molecular cross talk between mental and PS is thought to exist, with either synergistic or preventative effects on bone disease progression depending on the characteristics of the applied stressor. This mini review will explain the emerging concept of MS as an important player in bone adaptation and its potential cross talk with PS by summarizing the current state of knowledge, highlighting newly evolving notions (such as intergenerational transmission of stress and its epigenetic modifications affecting bone) and proposing new research directions.}, language = {en} } @article{WuStoddartWuertzKozaketal.2017, author = {Wu, Yabin and Stoddart, Martin J. and Wuertz-Kozak, Karin and Grad, Sibylle and Alini, Mauro and Ferguson, Stephen J.}, title = {Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading}, series = {Interface : journal of the Royal Society}, volume = {14}, journal = {Interface : journal of the Royal Society}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2017.0255}, pages = {9}, year = {2017}, language = {en} } @article{KangLimOhetal.2017, author = {Kang, Mi-Sun and Lim, Hae-Soon and Oh, Jong-Suk and Lim, You-jin and Wuertz-Kozak, Karin and Harro, Janette M. and Shirtliff, Mark E. and Achermann, Yvonne}, title = {Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus}, series = {Pathogens and disease / Federation of European Microbiology Societies}, volume = {75}, journal = {Pathogens and disease / Federation of European Microbiology Societies}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2049-632X}, doi = {10.1093/femspd/ftx009}, pages = {10}, year = {2017}, abstract = {The increasing prevalence of methicillin-resistant Staphylococcus aureus has become a major public health threat. While lactobacilli were recently found useful in combating various pathogens, limited data exist on their therapeutic potential for S. aureus infections. The aim of this study was to determine whether Lactobacillus salivarius was able to produce bactericidal activities against S. aureus and to determine whether the inhibition was due to a generalized reduction in pH or due to secreted Lactobacillus product(s). We found an 8.6-log10 reduction of planktonic and a 6.3-log10 reduction of biofilm S. aureus. In contrast, the previously described anti-staphylococcal effects of L. fermentum only caused a 4.0-log10 reduction in planktonic S. aureus cells, with no effect on biofilm S. aureus cells. Killing of S. aureus was partially pH dependent, but independent of nutrient depletion. Cell-free supernatant that was pH neutralized and heat inactivated or proteinase K treated had significantly reduced killing of L. salivarius than with pH-neutralized supernatant alone. Proteomic analysis of the L. salivarius secretome identified a total of five secreted proteins including a LysM-containing peptidoglycan binding protein and a protein peptidase M23B. These proteins may represent potential novel anti-staphylococcal agents that could be effective against S. aureus biofilms.}, language = {en} }