@article{RamanVenkatesanSmykallaPlossetal.2022, author = {Raman Venkatesan, Thulasinath and Smykalla, David and Ploss, Bernd and W{\"u}bbenhorst, Michael and Gerhard, Reimund}, title = {Tuning the relaxor-ferroelectric properties of Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) Terpolymer films by means of thermally induced micro- and nanostructures}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {55}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.2c00302}, pages = {5621 -- 5635}, year = {2022}, abstract = {The effects of thermal processing on the micro- and nanostructural features and thus also on the relaxor-ferroelectric properties of a P(VDF-TrFE-CFE) terpolymer were investigated in detail by means of dielectric experiments, such as dielectric relaxation spectroscopy (DRS), dielectric hysteresis loops, and thermally stimulated depolarization currents (TSDCs). The results were correlated with those obtained from differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and Fourier-transform infrared spectroscopy (FTIR). The results from DRS and DSC show that annealing reduces the Curie transition temperature of the terpolymer, whereas the results from WAXD scans and FTIR spectra help to understand the shift in the Curie transition temperatures as a result of reducing the ferroelectric phase fraction, which by default exists even in terpolymers with relatively high CFE contents. In addition, the TSDC traces reveal that annealing has a similar effect on the midtemperature transition by altering the fraction of constrained amorphous phase at the interphase between the crystalline and the amorphous regions. Changes in the transition temperatures are in turn related to the behavior of the hysteresis curves on differently heat-treated samples. During heating, evolution of the hysteresis curves from ferroelectric to relaxor-ferroelectric, first exhibiting single hysteresis loops and then double hysteresis loops near the Curie transition of the sample, is observed. When comparing the dielectric-hysteresis loops obtained at various temperatures, we find that annealed terpolymer films show higher electric-displacement values and lower coercive fields than the nonannealed sample, irrespective of the measurement temperature, and also exhibit ideal relaxor- ferroelectric behavior at ambient temperatures, which makes them excellent candidates for applications at or near room temperature. By tailoring the annealing conditions, it has been shown that the application temperature could be increased by fine tuning the induced micro- and nanostructures.}, language = {en} } @phdthesis{RamanVenkatesan2022, author = {Raman Venkatesan, Thulasinath}, title = {Tailoring applications-relevant properties in poly(vinylidene fluoride)-based homo-, co- and ter-polymers through modification of their three-phase structure}, doi = {10.25932/publishup-54966}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549667}, school = {Universit{\"a}t Potsdam}, pages = {xx, 218}, year = {2022}, abstract = {Poly(vinylidene fluoride) (PVDF)-based homo-, co- and ter-polymers are well-known for their ferroelectric and relaxor-ferroelectric properties. Their semi-crystalline morphology consists of crystalline and amorphous phases, plus interface regions in between, and governs the relevant electro-active properties. In this work, the influence of chemical, thermal and mechanical treatments on the structure and morphology of PVDF-based polymers and on the related ferroelectric/relaxor-ferroelectric properties is investigated. Polymer films were prepared in different ways and subjected to various treatments such as annealing, quenching and stretching. The resulting changes in the transitions and relaxations of the polymer samples were studied by means of dielectric, thermal, mechanical and optical techniques. In particular, the origin(s) behind the mysterious mid-temperature transition (T_{mid}) that is observed in all PVDF-based polymers was assessed. A new hypothesis is proposed to describe the T_{mid} transition as a result of multiple processes taking place within the temperature range of the transition. The contribution of the individual processes to the observed overall transition depends on both the chemical structure of the monomer units and the processing conditions which also affect the melting transition. Quenching results in a decrease of the overall crystallinity and in smaller crystallites. On samples quenched after annealing, notable differences in the fractions of different crystalline phases have been observed when compared to samples that had been slowly cooled. Stretching of poly(vinylidene fluoride-tetrafluoroethylene) (P(VDF-TFE)) films causes an increase in the fraction of the ferroelectric β-phase with simultaneous increments in the melting point (T_m) and the crystallinity (\chi_c) of the copolymer. While an increase in the stretching temperature does not have a profound effect on the amount of the ferroelectric phase, its stability appears to improve. Measurements of the non-linear dielectric permittivity \varepsilon_2^\prime in a poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE- CFE)) relaxor-ferroelectric (R-F) terpolymer reveal peaks at 30 and 80 °C that cannot be identified in conventional dielectric spectroscopy. The former peak is associated with T_{mid}\ and may help to understand the non-zero \varepsilon_2^\prime values that are found for the paraelectric terpolymer phase. The latter peak can also be observed during cooling of P(VDF-TrFE) copolymer samples at 100 °C and is due to conduction processes and space-charge polarization as a result of the accumulation of real charges at the electrode-sample interface. Annealing lowers the Curie-transition temperature of the terpolymer as a consequence of its smaller ferroelectric-phase fraction, which by default exists even in terpolymers with relatively high CFE content. Changes in the transition temperatures are in turn related to the behavior of the hysteresis curves observed on differently heat-treated samples. Upon heating, the hysteresis curves evolve from those known for a ferroelectric to those of a typical relaxor-ferroelectric material. Comparing dielectric-hysteresis loops obtained at various temperatures, we find that annealed terpolymer films show higher electric-displacement values and lower coercive fields than the non-annealed samples - irrespective of the measurement temperature - and also exhibit ideal relaxor-ferroelectric behavior at ambient temperatures, which makes them excellent candidates for related applications at or near room temperature. However, non-annealed films - by virtue of their higher ferroelectric activity - show a larger and more stable remanent polarization at room temperature, while annealed samples need to be poled below 0 °C to induce a well-defined polarization. Overall, by modifying the three phases in PVDF-based polymers, it has been demonstrated how the preparation steps and processing conditions can be tailored to achieve the desired properties that are optimal for specific applications.}, language = {en} } @article{RamanVenkatesanWuebbenhorstGerhard2022, author = {Raman Venkatesan, Thulasinath and W{\"u}bbenhorst, Michael and Gerhard, Reimund}, title = {Structure-property relationships in three-phase relaxor-ferroelectric terpolymers}, series = {Ferroelectrics}, volume = {586}, journal = {Ferroelectrics}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0015-0193}, doi = {10.1080/00150193.2021.2014260}, pages = {60 -- 81}, year = {2022}, abstract = {Poly(vinylidenefluoride-trifluoroethylene)-based (P(VDF-TrFE)-based) terpolymers represent a new class of electroactive polymer materials that are relaxor-ferroelectric (RF) polymers and that offer unique and attractive property combinations in comparison with conventional ferroelectric polymers. The RF state is achieved by introducing a fluorine-containing termonomer as a "defect" into the ferroelectric P(VDF-TrFE) copolymer, which reduces the interaction between the VDF/TrFE dipoles. The resulting terpolymer exhibits a low Curie transition temperature and small remanent and coercive fields yielding a slim hysteresis loop that is typical for RF materials. Though the macroscopic behavior is similar to RF ceramics, the mechanisms of relaxor ferroelectricity in semi-crystalline polymers are different and not fully understood yet. Structure-property relationships play an important role in RF terpolymers, as they govern the final RF properties. Hence, a review of important characteristics, previous studies and relevant developments of P(VDF-TrFE)-based terfluoropolymers with either chlorofluoroethylene (CFE) or chlorotrifluoroethylene (CTFE) as the termonomer is deemed useful. The role of the termonomer and of its composition, as well as the effects of the processing conditions on the semi-crystalline structure which in turn affects the final RF properties are discussed in detail. In addition, the presence of noteworthy transition(s) in the mid-temperature range and the influence of preparation conditions on those transitions are reviewed. A better understanding of the fundamental aspects affecting the semi-crystalline structures will help to elucidate the nature of RF activity in VDF-based terpolymers and also help to further improve their applications-relevant electroactive properties.}, language = {en} } @article{RamanVenkatesanGulyakovaFruebingetal.2018, author = {Raman Venkatesan, Thulasinath and Gulyakova, Anna A. and Fr{\"u}bing, Peter and Gerhard, Reimund}, title = {Relaxation processes and structural transitions in poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) relaxor-ferroelectric terpolymers as seen in dielectric spectroscopy}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {25}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {6}, publisher = {Institut of Electrical and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2018.007440}, pages = {2229 -- 2235}, year = {2018}, abstract = {Dielectric relaxation processes and structural transitions in Poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer films with two different monomer compositions were investigated in comparison with Poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer films as reference material. Differential Scanning Calorimetry was employed to assess annealing effects on phase transitions and crystalline structure, while relaxation processes were investigated by means of Dielectric Relaxation Spectroscopy, the results of which indicate the existence of two separate dispersion regions, denoted as processes A and B, respectively. Process A appears at a certain temperature independent of frequency, but is strongly influenced by the crystallisation temperature and the CFE content, while peak B shows typical features of a relaxation process and is less influenced by crystallisation temperature and CFE content. Furthermore, peak B is related to the glass transition which is more pronounced in the terpolymer than in P(VDF-TrFE). A closer analysis indicates that the addition of CFE and thermal annealing gradually shift the ferro-to-paraelectric transition in P(VDF-TrFE) to lower temperatures, while the phase transition is transformed more and more into a relaxation.}, language = {en} } @article{RamanVenkatesanGerhard2020, author = {Raman Venkatesan, Thulasinath and Gerhard, Reimund}, title = {Origin of the mid-temperature transition in vinylidenefluoride-based ferro-, pyro- and piezoelectric homo-, co- and ter-polymers}, series = {Materials Research Express}, volume = {7}, journal = {Materials Research Express}, publisher = {IOP Publ.}, address = {Bristol}, issn = {2053-1591}, doi = {10.1088/2053-1591/ab842c}, pages = {8}, year = {2020}, abstract = {The existence of an intermediate transition between the glass and the Curie/melting temperatures in Poly(vinylidene fluoride) (PVDF) and some of its co- and ter-polymers has been reported by several authors. In spite (or because?) of various different explanations in the literature, the origins of the transition are still not clear. Here, we try to understand the extra transition in more detail and study it with thermal and dielectric methods on PVDF, on its co-polymers with trifluoroethylene (P(VDF-TrFE)) and tetrafluoroethylene (P(VDF-TFE)), and on its ter-polymer with trifluoroethylene and chlorofluoroethylene (P(VDF-TrFE-CFE). Based on interpretations from the literature and our experimental studies, we propose the new hypothesis that the intermediate transition should have several interrelated origins. Especially since the relevant range is not far above room temperature, better understanding and control of their properties may also have practical implications for the use of the respective polymer materials in devices.}, language = {en} } @misc{RamanVenkatesanGerhard2020, author = {Raman Venkatesan, Thulasinath and Gerhard, Reimund}, title = {Origin of the mid-temperature transition in vinylidenefluoride-based ferro-, pyro- and piezoelectric homo-, co- and ter-polymers}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {977}, issn = {1866-8372}, doi = {10.25932/publishup-47467}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474672}, pages = {9}, year = {2020}, abstract = {The existence of an intermediate transition between the glass and the Curie/melting temperatures in Poly(vinylidene fluoride) (PVDF) and some of its co- and ter-polymers has been reported by several authors. In spite (or because?) of various different explanations in the literature, the origins of the transition are still not clear. Here, we try to understand the extra transition in more detail and study it with thermal and dielectric methods on PVDF, on its co-polymers with trifluoroethylene (P(VDF-TrFE)) and tetrafluoroethylene (P(VDF-TFE)), and on its ter-polymer with trifluoroethylene and chlorofluoroethylene (P(VDF-TrFE-CFE). Based on interpretations from the literature and our experimental studies, we propose the new hypothesis that the intermediate transition should have several interrelated origins. Especially since the relevant range is not far above room temperature, better understanding and control of their properties may also have practical implications for the use of the respective polymer materials in devices.}, language = {en} } @article{RamanVenkatesanSmykallaPlossetal.2021, author = {Raman Venkatesan, Thulasinath and Smykalla, David and Ploss, Bernd and W{\"u}bbenhorst, Michael and Gerhard, Reimund}, title = {Non-linear dielectric spectroscopy for detecting and evaluating structure-property relations in a P(VDF-TrFE-CFE) relaxor-ferroelectric terpolymer}, series = {Applied physics : A, Materials science \& processing}, volume = {127}, journal = {Applied physics : A, Materials science \& processing}, number = {10}, publisher = {Springer}, address = {Berlin ; Heidelberg ; New York}, issn = {0947-8396}, doi = {10.1007/s00339-021-04876-0}, pages = {10}, year = {2021}, abstract = {Non-linear dielectric spectroscopy (NLDS) is employed as an effective tool to study relaxation processes and phase transitions of a poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) relaxor-ferroelectric (R-F) terpolymer in detail. Measurements of the non-linear dielectric permittivity epsilon 2 ' reveal peaks at 30 and 80 degrees C that cannot be identified in conventional dielectric spectroscopy. By combining the results from NLDS experiments with those from other techniques such as thermally stimulated depolarization and dielectric-hysteresis studies, it is possible to explain the processes behind the additional peaks. The former peak, which is associated with the mid-temperature transition, is found in all other vinylidene fluoride-based polymers and may help to understand the non-zero epsilon 2 ' values that are detected on the paraelectric phase of the terpolymer. The latter peak can also be observed during cooling of P(VDF-TrFE) copolymer samples at 100 degrees C and is due to conduction and space-charge polarization as a result of the accumulation of real charges at the electrode-sample interface.}, language = {en} } @article{RamanVenkatesanGulyakovaGerhard2020, author = {Raman Venkatesan, Thulasinath and Gulyakova, Anna A. and Gerhard, Reimund}, title = {Influence of film stretching on crystalline phases and dielectric properties of a 70/30 mol\% poly(vinylidenefluoride-tetrafluoroethylene) copolymer}, series = {Journal of advanced dielectrics}, volume = {10}, journal = {Journal of advanced dielectrics}, number = {5}, publisher = {World Scientific}, address = {Singapore}, issn = {2010-135X}, doi = {10.1142/S2010135X2050023X}, pages = {10}, year = {2020}, abstract = {Polyvinylidene fluoride (PVDF)-based copolymers with tetrafluoroethylene (P(VDF-TFE)), trifluoroethylene (P(VDF-TrFE)) or hexafluoropropylene (P(VDF-HFP)) are of strong interest due to the underlying fundamental mechanisms and the potential ferro-, pyro- and piezo-electrical applications. Their flexibility and their adaptability to various shapes are advantageous in comparison to inorganic ferroelectrics. Here, we study the influence of stretching temperature on the crystalline phases and the dielectric properties in P(VDF-TFE) films by means of Dielectric Relaxation Spectroscopy (DRS), Fourier-Transform InfraRed spectroscopy (FTIR), Wide-Angle X-ray Diffraction (WAXD), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). Especially, the effect of stretching and the influence of the temperature of stretching on the mid-temperature (T-mid) transition are studied in detail. The results show that stretching has a similar effect as that on PVDF, and we observe an increase in the fraction of ferroelectric beta-phase with a simultaneous increment in both melting point (T-m) and crystallinity (chi(c)) of the copolymer. While an increase in the stretching temperature does not have a profound impact on the amount of ferroelectric phase, the stability of the ferroelectric phase seems to improve - as seen in the reduction of the Full Width at Half Maximum (FWHM) of the WAXD peaks in both parallel and perpendicular directions to the molecular chain axis. The observation is also supported by the reduction of dissipation losses with an increase in stretching temperature - as seen in DRS measurements. Finally, both stretching itself and the temperature of stretching affect the various molecular processes taking place in the temperature range of the T-mid transition.}, language = {en} } @misc{RamanVenkatesanFruebingGerhard2018, author = {Raman Venkatesan, Thulasinath and Fr{\"u}bing, Peter and Gerhard, Reimund}, title = {Influence of Composition and Preparation on Crystalline Phases and Morphology in Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) Relaxor-Ferroelectric Terpolymer}, series = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, journal = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-6389-9}, doi = {10.1109/ICD.2018.8514758}, pages = {4}, year = {2018}, abstract = {The influence of chemical composition and crystallisation conditions on the ferroelectric and paraelectric phases and the resulting morphology in Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer films with 55.4/37.2/7.3 mol\% or with 62.2/29.4/8.4 mol\% of VDF/TrFE/CFE was studied. Poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) with 75/25 mol\% VDF/TrFE was employed as reference material. Fourier-Transform Infrared Spectroscopy (FTIR) was used to determine the fractions of the relevant terpolymer phases, and X-Ray Diffraction (XRD) was employed to assess the crystalline morphology. The FTIR results show an increase of the fraction of paraelectric phases after annealing. On the other hand, XRD results indicate a more stable paraelectric phase in the terpolymer with higher CFE content.}, language = {en} } @article{RamanVenkatesanGulyakovaFruebingetal.2019, author = {Raman Venkatesan, Thulasinath and Gulyakova, Anna A. and Fr{\"u}bing, Peter and Gerhard, Reimund}, title = {Electrical polarization phenomena, dielectric relaxations and structural transitions in a relaxor-ferroelectric terpolymer investigated with electrical probing techniques}, series = {Materials research express}, volume = {6}, journal = {Materials research express}, number = {12}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2053-1591}, doi = {10.1088/2053-1591/ab5352}, pages = {7}, year = {2019}, abstract = {Dielectric Relaxation Spectroscopy (DRS) and Thermally Stimulated Depolarization Current (TSDC) measurements were employed to study dielectric-relaxation processes, structural transitions and electric-polarization phenomena in poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer films. Results from DRS confirm the existence of two separate dispersion regions related to a para-to-ferroelectric phase transition and to the glass transition. The dipolar TSDC peak correlates with the loss peak of the ? relaxation that represents the glass transition. The electric polarization calculated from the dipolar TSDC peak (glass transition) shows a non-linear electric-field dependence and saturates at high electric poling fields. As the observed behaviour is essentially the same as that of the electric polarization obtained from direct polarization-versus-electric-field hysteresis measurements, TSDC experiments are also suitable for studying the polarization in relaxor-ferroelectric polymers. A saturation polarization of 44 mC m(?2) was found for an electric field of 190 MV m(?1).}, language = {en} }