@article{YadavalliSaphiannikovaLomadzeetal.2013, author = {Yadavalli, Nataraja Sekhar and Saphiannikova, Marina and Lomadze, Nino and Goldenberg, Leonid M. and Santer, Svetlana}, title = {Structuring of photosensitive material below diffraction limit using far field irradiation}, series = {Applied physics : A, Materials science \& processing}, volume = {113}, journal = {Applied physics : A, Materials science \& processing}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-013-7945-3}, pages = {263 -- 272}, year = {2013}, abstract = {In this paper, we report on in-situ atomic force microscopy (AFM) studies of topographical changes in azobenzene-containing photosensitive polymer films that are irradiated with light interference patterns. We have developed an experimental setup consisting of an AFM combined with two-beam interferometry that permits us to switch between different polarization states of the two interfering beams while scanning the illuminated area of the polymer film, acquiring corresponding changes in topography in-situ. This way, we are able to analyze how the change in topography is related to the variation of the electrical field vector within the interference pattern. It is for the first time that with a rather simple experimental approach a rigorous assignment can be achieved. By performing in-situ measurements we found that for a certain polarization combination of two interfering beams [namely for the SP (a dagger center dot, a dagger") polarization pattern] the topography forms surface relief grating with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We believe that this relatively simple method could be extremely valuable to, for instance, produce structural features below the diffraction limit at high-throughput, and this could significantly contribute to the search of new fabrication strategies in electronics and photonics industry.}, language = {en} } @article{KoenigGoldenbergKulikovskaetal.2011, author = {Koenig, Tobias and Goldenberg, Leonid M. and Kulikovska, Olga and Kulikovsky, Lazar and Stumpe, Joachim and Santer, Svetlana}, title = {Reversible structuring of photosensitive polymer films by surface plasmon near field radiation}, series = {Soft matter}, volume = {7}, journal = {Soft matter}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c0sm01164a}, pages = {4174 -- 4178}, year = {2011}, abstract = {We report on the fabrication and characterisation of a novel type of hybrid azo-modified photosensitive polymer film with a nanoscale metallic structuring integrated into the substrate. The metal structures permit to generate surface plasmon near fields when irradiated by UV-light from the rear without directly illuminating the polymer. This allows establishment of a localized, complex-shape intensity distribution at sub-wavelength resolution with a corresponding impact on the photosensitive polymer. The possibilities of exploiting this setup are manifold. We find that just by using the change of polarization of the incident light as means of control, the topography can be driven to change between various patterns reversibly. These results are confirmed by numerical simulations and compared with in situ recorded topography changes.}, language = {en} } @article{SakhnoGoldenbergStumpeetal.2009, author = {Sakhno, Oksana V. and Goldenberg, Leonid M. and Stumpe, Joachim and Smirnova, Tatiana N.}, title = {Effective volume holographic structures based on organic-inorganic photopolymer nanocomposites}, issn = {1464-4258}, doi = {10.1088/1464-4258/11/2/024013}, year = {2009}, abstract = {We demonstrate a practical approach for the development of a broad range of nanocomposites based on acrylate polymers and organically capped inorganic nanoparticles (NPs). The submicrometer scale volume patterning of the nanocomposites using holographic photopolymerization was investigated. The specific adjustment of both the material parameters (core-shell of the NP, monomer mixture, concentrations) and the patterning conditions led to materials that were suitable for the fabrication of effective optical diffractive elements and specific functional microdevices with light-emissive and nonlinear optical (NLO) properties. The nanocomposite preparation and properties, their holographic performance and some examples of functional polymer-NP structures are reported.}, language = {en} }