@article{RaffaeliBellWeithoffetal.2003, author = {Raffaeli, D. and Bell, Elanor M. and Weithoff, Guntram and Matsumoto, A. and Cruz-Motta, J. J. and Kershaw, P. and Parker, R. and Parry, D. and Jones, M.}, title = {The ups and downs of benthic ecology : considerations of scale, heterogeneity and surveillance for benthic- pelagic coupling}, year = {2003}, language = {en} } @article{BellLaybournParry1999, author = {Bell, Elanor M. and Laybourn-Parry, J.}, title = {The plankton community of a young, eutrophic, Antarctic saline lake}, year = {1999}, abstract = {A shallow, saline lake (Rookery Lake) close to the sea and surrounded by a penguin rookery was investigated during the austral spring and summer of 1996/1997. The proximity to the sea means that the lake is likely to have been formed recently during isostatic uplift. Inputs of carbon and nutrients from the penguin rookery have rendered Rookery Lake eutrophic compared with other brackish and saline lakes in the Vestfold Hills. Chlorophyll a concentration, bacterioplankton, heterotrophic nanoflagellate and phototrophic nanoflagellate abundances were all significantly higher than in other non-enriched lakes. The high productivity created seasonal anoxia during winter and spring below ice cover. The ciliate community resembled the marine community, and was dissimilar to that seen in older saline lakes within the Vestfold Hills. Thus Rockery Lake provides valuable evidence of the impact of natural eutrophication on an Antarctic lake, as well as of the evolution of the typical microbial community which dominates the older lakes of the Vestfold Hills.}, language = {en} } @article{BellWeithoffGaedke2006, author = {Bell, Elanor M. and Weithoff, Guntram and Gaedke, Ursula}, title = {Temporal dynamics and growth of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic lake}, issn = {0046-5070}, doi = {10.1111/j.1365-2427.2006.01561.x}, year = {2006}, abstract = {1. The in situ abundance, biomass and mean cell volume of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic German mining lake (Lake 111; pH 2.65), were determined over three consecutive years (spring to autumn, 2001-03). 2. Actinophrys sol exhibited pronounced temporal and vertical patterns in abundance, biomass and mean cell volume. Increasing from very low spring densities, maxima in abundance and biomass were observed in late June/early July and September. The highest mean abundance recorded during the study was 7 x 10(3) Heliozoa L-1. Heliozoan abundance and biomass were higher in the epilimnion than in the hypolimnion. Actinophrys sol cells from this acidic lake were smaller than individuals of the same species found in other aquatic systems. 3. We determined the growth rate of A. sol using all potential prey items available in, and isolated and cultured from, Lake 111. Prey items included: single-celled and filamentous bacteria of unknown taxonomic affinity, the mixotrophic flagellates Chlamydomonas acidophila and Ochromonas sp., the ciliate Oxytricha sp. and the rotifers Elosa worallii and Cephalodella hoodi. Actinophrys sol fed over a wide-size spectrum from bacteria to metazoans. Positive growth was not supported by all naturally available prey. Actinophrys sol neither increased in cell number (k) nor biomass (k(b)) when starved, with low concentrations of single-celled bacteria or with the alga Ochromonas sp. Positive growth was achieved with single- celled bacteria (k = 0.22 +/- 0.02 d(-1); k(b) = -0.06 +/- 0.02 d(-1)) and filamentous bacteria (k = 0.52 +/- < 0.01 d(- 1); k(b) = 0.66 d(-1)) at concentrations greater than observed in situ, and the alga C. acidophila (up to k = 0.43 +/- 0.03 d(-1); k(b) = 0.44 +/- 0.04 d(-1)), the ciliate Oxytricha sp. (k = 0.34 +/- 0.01 d(-1)) and in mixed cultures containing rotifers and C. acidophila (k = 0.23 +/- 0.02-0.32 +/- 0.02 d(-1); maximum k(b) = 0.42 +/- 0.05 d(-1)). The individual- and biomass-based growth of A. sol was highest when filamentous bacteria were provided. 4. Existing quantitative carbon flux models for the Lake 111 food web can be updated in light of our results. Actinophrys sol are omnivorous predators supported by a mixed diet of filamentous bacteria and C. acidophila in the epilimnion. Heliozoa are important components in the planktonic food webs of 'extreme' environments}, language = {en} } @article{KamjunkeGaedkeTitteletal.2004, author = {Kamjunke, Norbert and Gaedke, Ursula and Tittel, J{\"o}rg and Weithoff, Guntram and Bell, Elanor M.}, title = {Strong vertical differences in the plankton composition of an extremely acidic lake}, year = {2004}, abstract = {Vertical differences in food web structure were examined in an extremely acidic, iron-rich mining lake in Germany (Lake 111; pH 2.6, total Fe 150mg L-1) during the period of stratification. We tested whether or not the seasonal variation of the plankton composition is less pronounced than the differences observed over depth. The lake was strongly stratified in summer, and concentrations of dissolved organic carbon and inorganic carbon were consistently low in the epilimnion but high in the hypolimnion. Oxygen concentrations declined in the hypolimnion but were always above 2mg L-1. Light attenuation did not change over depth and time and was governed by dissolved ferric iron. The plankton consisted mainly of single-celled and filamentous bacteria, the two mixotrophic flagellates Chlamydomonas sp. and Ochromonas sp., the two rotifer species Elosa worallii and Cephalodella hoodi, and Heliozoa as top predators. We observed very few ciliates and rhizopods, and no heterotrophic flagellates, crustaceans or fish. Ochromonas sp., bacterial filaments, Elosa and Heliozoa dominated in the epilimnion whereas Chlamydomonas sp., single-celled bacteria and Cephalodella dominated in the hypolimnion. Single-celled bacteria were controlled by Ochromonas sp. whereas the lack of large consumers favoured a high proportion of bacterial filaments. The primarily phototrophic Chlamydomas sp. was limited by light and CO2 and may have been reduced due to grazing by Ochromonas sp. in the epilimnion. The distribution of the primarily phagotrophic Ochromonas sp. and of the animals seemed to be controlled by prey availability. Differences in the plankton composition were much higher between the epilimnion and hypolimnion than within a particular stratum over time. The food web in Lake 111 was extremely species-poor enabling no functional redundancy. This was attributed to the direct exclusion of species by the harsh environmental conditions and presumably enforced by competitive exclusion. The latter was promoted by the low diversity at the first trophic level which, in turn, was attributed to relatively stable growth conditions and the independence of resource availability (inorganic carbon and light) from algal density. Ecological theory suggests that low functional redundancy promotes low stability in ecosystem processes which was not supported by our data.}, language = {en} } @article{Bell2007, author = {Bell, Elanor M.}, title = {Seasonal changes in the concentration and metabolic activity of bacteria and viruses at an Antarctic coastal site}, year = {2007}, abstract = {Bacteria play a key role in the world's oceans, supporting nutrient remineralisation and mediating carbon transfer. Little is known about annual changes in bacterial concentration, production and metabolism during the extreme seasonal changes in biological productivity in Antarctic waters. We measured rates of bacterial production, concentrations of viruses and bacteria and environmental parameters between February 2004 and January 2005 at an Antarctic coastal site. Concentrations of total bacteria and viruses were obtained using 4', 6-diamidino-2- phenylindole (DAPI) and SYBR Green I (Molecular Probes), respectively. Populations of bacteria in different metabolic states were estimated using vital stains. Concentrations of bacteria with intact or compromised plasma membranes were estimated using BacLight (Molecular Probes) and active cells estimated using 6-carboxyfluorescein diacetate (6CFDA). Our study showed 6CFDA and BacLight gave rapid and ecologically valuable insights into bacterial physiology, production and growth in natural Antarctic communities that were poorly represented by changes in total cell concentrations. Concentrations of total, active and intact bacteria declined rapidly at the end of summer probably owing to viral infection and microheterotrophic grazing. The decline continued over winter, likely owing to substrate limitation, and concentrations only increased after the phytoplankton bloom in spring and summer. Bacterial abundance was positively correlated with particulate organic carbon (POC) and nitrogen (PON), but not dissolved organic carbon (DOC), reflecting the refractory nature of the DOC pool. Only active and intact bacteria were significantly correlated with concentrations of chl a and rates of bacterial production. Furthermore, the obtained rates of [H-3]thymidine uptake suggest that bacterial growth rates can be sustained by the populations identified as intact or by active cells alone.}, language = {en} } @article{SchmidtkeBellWeithoff2006, author = {Schmidtke, Andrea and Bell, Elanor M. and Weithoff, Guntram}, title = {Potential grazing impact of the mixotrophic flagellate Ochromonas sp. (Chrysophyceae) on bacteria in an extremely acidic lake}, volume = {28}, number = {11}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbl034}, pages = {991 -- 1001}, year = {2006}, abstract = {Flagellates are important bacterial grazers in most planktonic food webs. The prey-size preference of the mixotrophic flagellate, Ochromonas sp. (Chrysophyceae), isolated from an extremely acidic lake, Lake 111 (pH 2.6), was determined using fluorescently labelled microspheres (beads). According to grazing experiments with cultured bacteria, also isolated from Lake 111, the potential grazing impact on Lake 111"s single-celled bacterial production was calculated. Ochromonas sp. ingested the smallest beads offered (0.5 µm diameter) at the highest rate. Ingestion rate declined with increasing bead size. The highest prey volume-specific ingestion was measured for Ochromonas sp. feeding on intermediate-sized beads (1.9 µm). Ingestion rates were low due in part to the large fraction of inactive flagellates observed. According to the bacterial ingestion rate, a mean of 88\% (epilimnion) and 68\% (hypolimnion) of in situ single- celled bacterial production is potentially grazed daily by Ochromonas sp. In the epilimnion of Lake 111, the heterotrophic carbon gain is three times higher than the autotrophic production. Alongside carbon uptake, Ochromonas sp. also benefits from ingesting bacteria through the uptake of phosphorus. A biovolume minimum corresponding to the prey size at which Ochromonas sp. feeds most efficiently occurred in the Lake 111 epilimnetic bacterial community, implying top-down control of the bacterial community by Ochromonas sp.}, language = {en} } @article{BellLaybournParry2003, author = {Bell, Elanor M. and Laybourn-Parry, J.}, title = {Mixotrophy in the Antarctic phytoflagellate, Pyramimonas gelidicola (Chlorophyta: Prasinophyta)}, year = {2003}, abstract = {Grazing by the planktonic, phytoflagellate, Pyramimonas gelidicola McFadden (Chlorophyta: Prasinophyta), and heterotrophic nanoflagellates (HNAN) in meromictic, saline Ace Lake in the Vestfold Hills, Eastern Antarctica, was investigated in the austral summers of 1997 and 1999. Up to 47\% of the P. gelidicola population ingested fluorescently labelled prey (FLP). Ingestion rates varied with depth. In January 1997 and November 1999, maximum P. gelidicola ingestion rates of 6.95 and 0.79 FLP;cell-1;h-1, respectively, were measured at the chemocline (6-8 m) where a deep chlorophyll maximum composed of phototrophic nanoflagellates (PNAN DCM), predominantly P. gelidicola, persisted all year. During the summers of 1997 and 1999, the grazing P. gelidicola community removed between 0.4 and approximately 16\% of in situ bacterial biomass, equivalent to between 4 and >100\% of in situ bacterial production. Due to their higher abundance, the community clearance rates of HNAN in Ace Lake generally exceeded those of P. gelidicola but HNAN removed approximately only 3 to 4\% of bacterial biomass, equivalent to between 28 and 32\% of bacterial production. P. gelidicola growth rates were highest at the PNAN DCM concomitant with the highest ingestion rates. It is estimated that during the summer P. gelidicola can derive up to 30\% of their daily carbon requirements from bacterivory at the PNAN DCM. This study confirms mixotrophy as an important strategy by which planktonic organisms can survive in extreme, polar, lacustrine ecosystems.}, language = {en} } @article{LaybournParryRobertsBell2000, author = {Laybourn-Parry, J. and Roberts, E. C. and Bell, Elanor M.}, title = {Mixotrophy as a survival strategy in Antarctic lakes}, year = {2000}, abstract = {Mixotrophy is a widespread phenomenon among planktonic protists. It involves the combination of autotrophy and heterotrophy in varying degrees. Many phytoflagellate species ingest bacteria as a means of obtaining nutrients for photosynthesis or for supplementing their carbon budget under light limitation. Ciliates either sequester the plastids of their algal prey or harbour endosymbiotic algae. In the saline lakes of the Vestfold Hills and in Lakes Hoare and Fryxell in the McMurdo Dry Valleys the dominant phytoflagellates ingest bacteria, and there is evidence to suggest that during the winter months they lack chlorophyll and may become entirely heterotrophic. In Lake Fryxell phagotrophic pyhtoflagellates (cryptophytes) made a significant impact on bacterial production, removing up to 13\% of the bacterial biomass day-1. These cryptophytes suffered predation from Plagiocampa (a ciliate), which appears to harbour them for a significant period before digesting them. We suspect that this may be equivalent to an intermediate stage in the evolution of mixotrophy. A significant number of the planktonic ciliates in Antarctic lakes were mixotrophic. The final evolutionary end point is the situation seen in Mesodinium rubrum, which now relies entirely on its cryptophycean endosymbiont and no longer ingests food. Mesodinium is the dominant ciliate in many of the saline lakes of the Vestfold Hills, which are of marine origin. It can reach abundances in excess of 60,000l-1 in Ace Lake, This ciliate is a ubiquitous member of the marine plankton worldwide and has successfully adapted to the lacustrine environment in Antarctica. The evidence suggests that among the survival strategies seen in Antarctic lake plankton, mixotrophy plays and important role among a number of the dominant protozoan species.}, language = {en} } @article{TittelBissingerZippeletal.2003, author = {Tittel, J{\"o}rg and Bissinger, Vera and Zippel, Barbara and Gaedke, Ursula and Bell, Elanor M. and Lorke, Andreas and Kamjunke, Norbert}, title = {Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs}, year = {2003}, abstract = {The majority of species can be grouped into those relying solely on photosynthesis (phototrophy) or those relying solely on the assimilation of organic substances (heterotrophy) to meet their requirements for energy and carbon. However, a special life history trait exists in which organisms combine both phototrophy and heterotrophy. Such 'mixotrophy' is a widespread phenomenon in aquatic habitats and is observed in many protozoan and metazoan organisms. The strategy requires investment in both photosynthetic and heterotrophic cellular apparatus, but the benefits must outweigh these costs. In accordance with the mechanistic resource competition theory, laboratory experiments revealed that pigmented mixotrophs combined light and prey as substitutable resources. Thereby, they reduced prey abundance below the critical food concentration of competing specialist grazers [Rothhaupt, K. O. (1996) Ecology 77, 716-724]. Here, we demonstrate for the first time the important consequences of this strategy for an aquatic community. In the illuminated surface strata of a lake, mixotrophs reduced prey abundance so steeply that grazers from higher trophic levels, consuming both the mixotrophs and their prey, could not persist. Thus, the mixotrophs escaped from both competition and grazing, and remained dominant. Furthermore, the mixotrophs structured the prey abundance along the vertical light gradient creating low densities near the surface and a pronounced maximum of their algal prey at depth. Such deep algal accumulations are typical features of nutrient poor aquatic habitats, previously explained by resource availability. We hypothesize instead that the mixotrophic grazing strategy is responsible for deep algal accumulations in many aquatic environments.}, language = {en} } @article{LaybournParryBellRoberts2000, author = {Laybourn-Parry, J. and Bell, Elanor M. and Roberts, E. C.}, title = {Growth of Protozoa in Antarctic lakes}, year = {2000}, abstract = {The growth rates of heterotrophic nanoflagellates (HNAN), mixotrophic cryptophytes, dinoflagellates and ciliates in field assemblages from Ace Lake in the Vestfold Hills (eastern Antarctica) and Lakes Fryxell and Hoare (McMurdo Dry Valleys, western Antarctica), were determined during the austral summers of 1996/1997 and 1997/1998. The response of the nanoflagellates to temperature differed between lakes in eastern and western Antarctica. In Ace Lake the available bacterial food resources had little impact on growth rate, while temperature imposed an impact, whereas in Lake Hoare increased bacterial food resources elicited an increase in growth rate. However, the incorporation of published data from across Antarctica showed that temperature had the greater effect, but that growth is probably controlled by a suite of factors not solely related to bacterial food resources and temperature. Dinoflagellates had relatively high specific growth rates (0.0057-0.384 h(-1)), which were comparable to Antarctic lake ciliates and to dinoflagellates from warmer, lower latitude locations. Temperature did not appear to impose any significant impact on growth rates. Mixotrophic cryptophytes in Lake Hoare had lower specific growth rates than HNAN (0.0029-0.0059 h(-1) and 0.0056-0.0127 h(-1), respectively). They showed a marked seasonal variation in growth rate, which was probably related to photosynthetically active radiation under the ice at different depths in the water column. Ciliates' growth rates showed no relationship between food supply and mean cell volume, but did show a response to temperature. Specific growth rates ranged between 0.0033 and 0.150 h(-1) for heterotrophic ciliates, 0.0143 h(-1) for a mixotrophic Plagiocampa species and 0.0075 h(-1) for the entirely autotrophic ciliate, Mesodinium rubrum. The data indicated that the scope for growth among planktonic Protozoa living in oligotrophic, cold extreme lake ecosystems is limited. These organisms are likely to suffer prolonged physiological stress, which may account for the highly variable growth rates seen within and between Antarctic lakes.}, language = {en} }