@article{KlippertStolpmannGrumetal.2023, author = {Klippert, Monika and Stolpmann, Robert and Grum, Marcus and Thim, Christof and Gronau, Norbert and Albers, Albert}, title = {Knowledge transfer quality improvement}, series = {Procedia CIRP}, volume = {119}, journal = {Procedia CIRP}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-8271}, doi = {10.1016/j.procir.2023.02.171}, pages = {919 -- 925}, year = {2023}, abstract = {Developing a new product generation requires the transfer of knowledge among various knowledge carriers. Several factors influence knowledge transfer, e.g., the complexity of engineering tasks or the competence of employees, which can decrease the efficiency and effectiveness of knowledge transfers in product engineering. Hence, improving those knowledge transfers obtains great potential, especially against the backdrop of experienced employees leaving the company due to retirement, so far, research results show, that the knowledge transfer velocity can be raised by following the Knowledge Transfer Velocity Model and implementing so-called interventions in a product engineering context. In most cases, the implemented interventions have a positive effect on knowledge transfer speed improvement. In addition to that, initial theoretical findings describe factors influencing the quality of knowledge transfers and outline a setting to empirically investigate how the quality can be improved by introducing a general description of knowledge transfer reference situations and principles to measure the quality of knowledge artifacts. To assess the quality of knowledge transfers in a product engineering context, the Knowledge Transfer Quality Model (KTQM) is created, which serves as a basis to develop and implement quality-dependent interventions for different knowledge transfer situations. As a result, this paper introduces the specifications of eight situation-adequate interventions to improve the quality of knowledge transfers in product engineering following an intervention template. Those interventions are intended to be implemented in an industrial setting to measure the quality of knowledge transfers and validate their effect.}, language = {en} } @inproceedings{GrumKlippertAlbersetal.2021, author = {Grum, Marcus and Klippert, Monika and Albers, Albert and Gronau, Norbert and Thim, Christof}, title = {Examining the quality of knowledge transfers}, series = {Proceedings of the Design Society}, volume = {1}, booktitle = {Proceedings of the Design Society}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {2732-527X}, doi = {10.1017/pds.2021.404}, pages = {1431 -- 1440}, year = {2021}, abstract = {Already successfully used products or designs, past projects or our own experiences can be the basis for the development of new products. As reference products or existing knowledge, it is reused in the development process and across generations of products. Since further, products are developed in cooperation, the development of new product generations is characterized by knowledge-intensive processes in which information and knowledge are exchanged between different kinds of knowledge carriers. The particular knowledge transfer here describes the identification of knowledge, its transmission from the knowledge carrier to the knowledge receiver, and its application by the knowledge receiver, which includes embodied knowledge of physical products. Initial empirical findings of the quantitative effects regarding the speed of knowledge transfers already have been examined. However, the factors influencing the quality of knowledge transfer to increase the efficiency and effectiveness of knowledge transfer in product development have not yet been examined empirically. Therefore, this paper prepares an experimental setting for the empirical investigation of the quality of knowledge transfers.}, language = {en} } @inproceedings{GrumRappGronauetal.2019, author = {Grum, Marcus and Rapp, Simon and Gronau, Norbert and Albers, Albert}, title = {Accelerating knowledge}, series = {Business modeling and software design}, volume = {356}, booktitle = {Business modeling and software design}, editor = {Shishkov, Boris}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-24853-6}, doi = {10.1007/978-3-030-24854-3_7}, pages = {95 -- 113}, year = {2019}, abstract = {As knowledge-intensive processes are often carried out in teams and demand for knowledge transfers among various knowledge carriers, any optimization in regard to the acceleration of knowledge transfers obtains a great economic potential. Exemplified with product development projects, knowledge transfers focus on knowledge acquired in former situations and product generations. An adjustment in the manifestation of knowledge transfers in its concrete situation, here called intervention, therefore can directly be connected to the adequate speed optimization of knowledge-intensive process steps. This contribution presents the specification of seven concrete interventions following an intervention template. Further, it describes the design and results of a workshop with experts as a descriptive study. The workshop was used to assess the practical relevance of interventions designed as well as the identification of practical success factors and barriers of their implementation.}, language = {en} }