@article{MelnickGarcinQuinterosetal.2012, author = {Melnick, Daniel and Garcin, Yannick and Quinteros, Javier and Strecker, Manfred and Olago, Daniel and Tiercelin, Jean-Jacques}, title = {Steady rifting in northern Kenya inferred from deformed Holocene lake shorelines of the Suguta and Turkana basins}, series = {Earth \& planetary science letters}, volume = {331}, journal = {Earth \& planetary science letters}, number = {10}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.03.007}, pages = {335 -- 346}, year = {2012}, abstract = {A comparison of deformation rates in active rifts over different temporal scales may help to decipher variations in their structural evolution, controlling mechanisms, and evolution of sedimentary environments through time. Here we use deformed lake shorelines in the Suguta and Turkana basins in northern Kenya as strain markers to estimate deformation rates at the 10(3)-10(4) yr time scale and compare them with rates spanning 10(1)-10(7) yr. Both basins are internally drained today, but until 7 to 5 kyr lake levels were 300 and 100 m higher, respectively, maintained by the elevation of overflow sills connecting them with the Nile drainage. Protracted high lake levels resulted in formation of a maximum highstand shoreline - a distinct geomorphic feature virtually continuous for several tens of kilometers. We surveyed the elevation of this geomorphic marker at 45 sites along >100 km of the rift, and use the overflow sills as vertical datum. Thin-shell elastic and thermomechanical models for this region predict up to similar to 10 m of rapid isostatic rebound associated with lake-level falls lasting until similar to 2 kyr ago. Holocene cumulative throw rates along four rift-normal profiles are 6.8-8.5 mm/yr, or 7.5-9.6 mm/yr if isostatic rebound is considered. Assuming fault dips of 55-65, inferred from seismic reflection profiles, we obtained extension rates of 3.2-6 mm/yr (including uncertainties in field measurements, fault dips, and ages), or 3.5-6.7 mm/yr considering rebound. Our estimates are consistent, within uncertainties, with extension rates of 4-5.1 mm/yr predicted by a modern plate-kinematic model and plate reconstructions since 3.2 Myr. The Holocene strain rate of 10(-15) s(-1) is similar to estimates on the similar to 10(6) yr scale, but over an order of magnitude higher than on the similar to 10(7) yr scale. This is coherent with continuous localization and narrowing of the plate boundary, implying that the lithospheric blocks limiting the Kenya Rift are relatively rigid. Increasing strain rate under steady extension rate suggests that, as the magnitude of extension and crustal thinning increases, the role of regional processes such as weakening by volcanism becomes dominant over far-field plate tectonics controlling the breakup process and the transition from continental rifting to oceanic spreading.}, language = {en} } @article{MelnickYildirimHillemannetal.2017, author = {Melnick, Daniel and Yildirim, Cengiz and Hillemann, Christian and Garcin, Yannick and Ciner, T. Attila and Perez-Gussinye, Marta and Strecker, Manfred}, title = {Slip along the Sultanhani Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions}, series = {Geophysical journal international}, volume = {209}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggx074}, pages = {1431 -- 1454}, year = {2017}, abstract = {Central Anatolia is a low-relief, high-elevation region where decadal-scale deformation rates estimated from space geodesy suggest low strain rates within a stiff microplate. However, numerous Quaternary faults have been mapped within this low-strain region and estimating their slip rate and seismic potential is important for hazard assessments in an area of increasing infrastructural development. Here we focus on the Sultanhani Fault (SF), which constitutes an integral part of the Eskisehir-Cihanbeyli Fault System, and use deformed maximum highstand shorelines of palaeo-lake Konya to estimate tectonic slip rates at millennial scale. Some of these shorelines were previously interpreted as fault scarps, but we provide conclusive evidence for their erosional origin. We found that shoreline-angle elevations estimated from differential GPS profiles record vertical displacements of 10.2 m across the SF. New radiocarbon ages of lacustrine molluscs suggest 22.4 m of relative lake-level fall between 22.1 +/- 0.3 and 21.7 +/- 0.4 cal. kaBP, constraining the timing of abrupt abandonment of the highstand shoreline. Models of lithospheric rebound associated with regressions of the Tuz Golu and Konya palaeolakes predict only similar to 1 m of regional-scale uplift across the Konya Basin. Dislocation models of displaced shorelines suggest fault-slip rates of 1.5 and 1.8 mm yr(-1) for planar and listric fault geometries, respectively, providing reasonable results for the latter. We found fault scarps in the Nasuhpinar mudflat that likely represent the most recent ground-breaking rupture of the SF, with an average vertical displacement of 1.2 +/- 0.5 m estimated from 54 topographic profiles, equivalent to a M similar to 6.5-6.9 earthquake based on empirical scaling laws. If such events were characteristic during the ultimate 21 ka, a relatively short recurrence time of similar to 800-900 yr would be needed to account for the millennial slip rate. Alternatively, the fault scarp at Nasuhpinar might represent a larger earthquake requiring more frequent smaller events to account for the millennial rate. The relatively fast slip rate of the SF over the past 21 ka is unlikely to have persisted over longer timescales and might reflect spatiotemporal variations in deformation rates within kinematically-linked fault systems within Central Anatolia, or a transient perturbation to the local stress field or fault strength. Such perturbation might have been related to climatically controlled changes in surface and near-surface loads and by interactions among the different tectonic processes that have been proposed to drive the overall slow uplift and associated extension in the Central Anatolian Plateau.}, language = {en} } @misc{GarcinAcostaMelnicketal.2017, author = {Garcin, Yannick and Acosta, Veronica Torres and Melnick, Daniel and Guillemoteau, Julien and Willenbring, Jane and Strecker, Manfred}, title = {Short-lived increase in erosion during the African Humid Period: Evidence from the northern Kenya Rift (vol 759, pg 58, 2017)}, series = {Earth \& planetary science letters}, volume = {474}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.07.027}, pages = {528 -- 528}, year = {2017}, language = {en} } @article{GarcinSchildgenAcostaetal.2017, author = {Garcin, Yannick and Schildgen, Taylor F. and Acosta, Veronica Torres and Melnick, Daniel and Guillemoteau, Julien and Willenbring, Jane and Strecker, Manfred}, title = {Short-lived increase in erosion during the African Humid Period}, series = {Earth \& planetary science letters}, volume = {459}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.11.017}, pages = {58 -- 69}, year = {2017}, abstract = {The African Humid Period (AHP) between similar to 15 and 5.5 cal. kyr BP caused major environmental change in East Africa, including filling of the Suguta Valley in the northern Kenya Rift with an extensive (similar to 2150 km(2)), deep (similar to 300 m) lake. Interfingering fluvio-lacustrine deposits of the Baragoi paleo-delta provide insights into the lake-level history and how erosion rates changed during this time, as revealed by delta-volume estimates and the concentration of cosmogenic Be-10 in fluvial sand. Erosion rates derived from delta-volume estimates range from 0.019 to 0.03 mm yr(-1). Be-10-derived paleo-erosion rates at similar to 11.8 cal. kyr BP ranged from 0.035 to 0.086 mm yr(-1), and were 2.7 to 6.6 times faster than at present. In contrast, at similar to 8.7 cal. kyr BP, erosion rates were only 1.8 times faster than at present. Because Be-10-derived erosion rates integrate over several millennia; we modeled the erosion-rate history that best explains the 10Be data using established non-linear equations that describe in situ cosmogenic isotope production and decay. Two models with different temporal constraints (15-6.7 and 12-6.7 kyr) suggest erosion rates that were 25 to 300 times higher than the initial erosion rate (pre-delta formation). That pulse of high erosion rates was short (similar to 4 kyr or less) and must have been followed by a rapid decrease in rates while climate remained humid to reach the modern Be-10-based erosion rate of,similar to 0.013 mm yr(-1). Our simulations also flag the two highest Be-10-derived erosion rates at 11.8 kyr BP related to nonuniform catchment erosion. These changes in erosion rates and processes during the AHP may reflect a strong increase in precipitation, runoff, and erosivity at the arid-to-humid transition either at 15 or similar to 12 cal. kyr BP, before the landscape stabilized again, possibly due to increased soil production and denser vegetation.}, language = {en} } @article{GarcinSchefussSchwabetal.2014, author = {Garcin, Yannick and Schefuss, Enno and Schwab, Valerie F. and Garreta, Vincent and Gleixner, Gerd and Vincens, Annie and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Sachse, Dirk}, title = {Reconstructing C-3 and C-4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {142}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2014.07.004}, pages = {482 -- 500}, year = {2014}, abstract = {Trees and shrubs in tropical Africa use the C-3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C-4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C-27 to n-C-33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane delta C-13 values are often used to reconstruct past C-3/C-4 composition of vegetation, assuming that the relative proportions of C-3 and C-4 leaf waxes reflect the relative proportions of C-3 and C-4 plants. We have compared the delta C-13 values of n-alkanes from modern C-3 and C-4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C-3 vegetation cover (f(C3)) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C-3-dominated rain forest by C-4-dominated savanna. The C-3 plants analysed were characterised by substantially higher abundances of n-C-29 alkanes and by substantially lower abundances of n-C-33 alkanes than the C-4 plants. Furthermore, the sedimentary delta C-13 values of n-C-29 and n-C-31 alkanes from recent lake sediments in Cameroon (-37.4\%) to 26.5\%) were generally within the range of delta C-13 values for C-3 plants, even when from sites where C-4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C-3 and C-4 vegetation cover when using the delta C-13 values of sedimentary n-alkanes, overestimating the proportion of C-3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C-3 and C-4 plants. We therefore tested a set of non-linear binary mixing models using delta C-13 values from both C-3 and C-4 vegetation as end-members. The non-linear models included a sigmoid function (sine-squared) that describes small variations in the f(C3) values as the minimum and maximum delta C-13 values are approached, and a hyperbolic function that takes into account the differences between C-3 and C-4 plants discussed above. Model fitting and the estimation of uncertainties were completed using the Monte Carlo algorithm and can be improved by future data addition. Models that provided the best fit with the observed delta C-13 values of sedimentary n-alkanes were either hyperbolic functions or a combination of hyperbolic and sine-squared functions. Such non-linear models may be used to convert delta C-13 measurements on sedimentary n-alkanes directly into reconstructions of C-3 vegetation cover. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{OzsayinCinerRojayetal.2013, author = {Ozsayin, Erman and Ciner, T. Attila and Rojay, F. Bora and Dirik, R. Kadir and Melnick, Daniel and Fernandez-Blanco, David and Bertotti, Giovanni and Schildgen, Taylor F. and Garcin, Yannick and Strecker, Manfred and Sudo, Masafumi}, title = {Plio-Quaternary extensional tectonics of the Central Anatolian Plateau a case study from the Tuz Golu Basin, Turkey}, series = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, volume = {22}, journal = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, number = {5}, publisher = {T{\"u}bitak}, address = {Ankara}, issn = {1300-0985}, doi = {10.3906/yer-1210-5}, pages = {691 -- 714}, year = {2013}, abstract = {The Tuz Golu Basin is the largest sedimentary depression located at the center of the Central Anatolian Plateau, an extensive, low-relief region with elevations of ca. 1 km located between the Pontide and Tauride mountains. Presently, the basin morphology and sedimentation processes are mainly controlled by the extensional Tuz Golu Fault Zone in the east and the transtensional Inonu-Eskisehir Fault System in the west. The purpose of this study is to contribute to the understanding of the Plio-Quaternary deformation history and to refine the timing of the latest extensional phase of the Tuz Golu Basin. Field observations, kinematic analyses, interpretations of seismic reflection lines, and Ar-40/Ar-39 dating of a key ignimbrite layer suggest that a regional phase of NNW-SSE to NE-SW contraction ended by 6.81 +/- 0.24 Ma and was followed by N-S to NE-SW extension during the Pliocene-Quaternary periods. Based on sedimentological and chronostratigraphic markers, the average vertical displacement rates over the past 5 or 3 Ma with respect to the central part of Tuz Golu Lake are 0.03 to 0.05 mm/year for the fault system at the western flank of the basin and 0.08 to 0.13 mm/year at the eastern flank. Paleo-shorelines of the Tuz Golu Lake, vestiges of higher lake levels related to Quaternary climate change, are important strain markers and were formed during Last Glacial Maximum conditions as indicated by a radiocarbon age of 21.8 +/- 0.4 ka BP obtained from a stromatolitic crust. Geomorphic observations and deformed lacustrine shorelines suggest that the main strand of the Tuz Golu Fault Zone straddling the foothills of the Sereflikochisar-Aksaray range has not been active during the Holocene. Instead, deformation appears to have migrated towards the interior of the basin along an offshore fault that runs immediately west of Sereflikochisar Peninsula. This basinward migration of deformation is probably associated with various processes acting at the lithospheric scale, such as plateau uplift and/or microplate extrusion.}, language = {en} } @article{DiazDietrichSebagetal.2018, author = {Diaz, Nathalie and Dietrich, Fabienne and Sebag, David and King, Georgina E. and Valla, Pierre G. and Durand, Alain and Garcin, Yannick and de Saulie, Geoffroy and Deschamps, Pierre and Herman, Frederic and Verrecchia, Eric P.}, title = {Pedo-sedimentary constituents as paleoenvironmental proxies in the Sudano-Sahelian belt during the Late Quaternary (southwestern Chad Basin)}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {191}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2018.05.022}, pages = {348 -- 362}, year = {2018}, abstract = {Climate and environmental changes since the Last Glacial Maximum in the tropical zone of West Africa are usually inferred from marine and continental records. In this study, the potential of carbonate pedo-sedimentary geosystems, i.e. Vertisol relics, to record paleoenvironmental changes in the southwestern part of Chad Basin are investigated. A multi-dating approach was applied on different pedogenic organo-mineral constituents. Optically stimulated luminescence (OSL) dating was performed on the soil K-rich feldspars and was combined with radiocarbon dating on both the inorganic (C-14(inorg)) and organic carbon (C-14(org)) soil fractions. Three main pedo-sedimentary processes were assessed over the last 20 ka BP: 1) the soil parent material deposition, from 18 ka to 12 ka BP (OSL), 2) the soil organic matter integration, from 11 cal ka to 8 cal ka BP (C-14(org)), and 3) the pedogenic carbonate nodule precipitation, from 7 cal ka to 5 cal ka BP (C-14(inorg)). These processes correlate well with the Chad Basin stratigraphy and West African records and are shown to be related to significant changes in the soil water balance responding to the evolution of continental hydrology during the Late Quaternary. The last phase affecting the Vertisol relics is the increase of erosion, which is hypothesized to be due to a decrease of the vegetation cover triggered by (i) the onset of drier conditions, possibly strengthened by (ii) anthropogenic pressure. Archaeological data from Far North Cameroon and northern Nigeria, as well as sedimentation times in Lake Tilla (northeastern Nigeria), were used to test these relationships. The increase of erosion is suggested to possibly occur between c. 3 cal ka and 1 cal ka BP. Finally, satellite images revealed similar geosystems all along the Sudano-Sahelian belt, and initial C-14(inorg) ages of the samples collected in four sites gave similar ages to those reported in this study. Consequently, the carbonate pedo-sedimentary geosystems are valuable continental paleoenvironmental archives and soil water balance proxies of the semiarid tropics of West Africa. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{GarcinDeschampsMenotetal.2018, author = {Garcin, Yannick and Deschamps, Pierre and Menot, Guillemette and de Saulieu, Geoffroy and Schefuss, Enno and Sebag, David and Dupont, Lydie M. and Oslisly, Richard and Brademann, Brian and Mbusnum, Kevin G. and Onana, Jean-Michel and Ako, Andrew A. and Epp, Laura Saskia and Tjallingii, Rik and Strecker, Manfred and Brauer, Achim and Sachse, Dirk}, title = {No evidence for climate variability during the late Holocene rainforest crisis in Western Central Africa REPLY}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {29}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1808481115}, pages = {E6674 -- E6675}, year = {2018}, language = {en} } @article{GarcinJungingerMelnicketal.2009, author = {Garcin, Yannick and Junginger, Annett and Melnick, Daniel and Olago, Daniel O. and Strecker, Manfred and Trauth, Martin H.}, title = {Late Pleistocene-Holocene rise and collapse of the Lake Suguta, northern Kenya Rift}, doi = {10.1016/j.quascirev.2008.12.006}, year = {2009}, language = {en} } @article{GarcinSchwabGleixneretal.2012, author = {Garcin, Yannick and Schwab, Valerie F. and Gleixner, Gerd and Kahmen, Ansgar and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Sachse, Dirk}, title = {Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology insights from a calibration transect across Cameroon}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {79}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2011.11.039}, pages = {106 -- 126}, year = {2012}, abstract = {Hydrogen isotope values (delta D) of sedimentary aquatic and terrestrial lipid biomarkers, originating from algae, bacteria, and leaf wax, have been used to record isotopic properties of ancient source water (i.e., precipitation and/or lake water) in several mid-and high-latitude lacustrine environments. In the tropics, however, where both processes associated with isotope fractionation in the hydrologic system and vegetation strongly differ from those at higher latitudes, calibration studies for this proxy are not yet available. To close this gap of knowledge, we sampled surface sediments from 11 lakes in Cameroon to identify those hydro-climatological processes and physiological factors that determine the hydrogen isotopic composition of aquatic and terrestrial lipid biomarkers. Here we present a robust framework for the application of compound-specific hydrogen isotopes in tropical Africa. Our results show that the delta D values of the aquatic lipid biomarker n-C(17) alkane were not correlated with the delta D values of lake water. Carbon isotope measurements indicate that the n-C(17) alkane was derived from multiple source organisms that used different hydrogen pools for biosynthesis. We demonstrate that the delta D values of the n-C(29) alkane were correlated with the delta D values of surface water (i.e., river water and groundwater), which, on large spatial scales, reflect the isotopic composition of mean annual precipitation. Such a relationship has been observed at higher latitudes, supporting the robustness of the leaf-wax lipid delta D proxy on a hemispheric spatial scale. In contrast, the delta D values of the n-C(31) alkane did not show such a relationship but instead were correlated with the evaporative lake water delta D values. This result suggests distinct water sources for both leaf-wax lipids, most likely originating from two different groups of plants. These new findings have important implications for the interpretation of long-chain n-alkane delta D records from ancient lake sediments. In particular, a robust interpretation of palaeohydrological data requires knowledge of the vegetation in the catchment area as different plants may utilise different water sources. Our results also suggest that the combination of carbon and hydrogen isotopes does help to differentiate between the metabolic pathway and/or growth form of organisms and therefore, the source of hydrogen used during lipid biosynthesis.}, language = {en} }