@article{SeilerSremcevicSeissetal.2017, author = {Seiler, Martin and Sremcevic, Miodrag and Seiss, Martin and Hoffmann, Holger and Spahn, Frank}, title = {A Librational Model for the Propeller Bleriot in the Saturnian Ring System}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {840}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/aa6d73}, pages = {6}, year = {2017}, language = {en} } @article{MeierKriegelMotschmannetal.2014, author = {Meier, Patrick and Kriegel, Hendrik and Motschmann, Uwe and Schmidt, J{\"u}rgen and Spahn, Frank and Hill, Thomas W. and Dong, Yaxue and Jones, Geraint H.}, title = {A model of the spatial and size distribution of Enceladus' dust plume}, series = {Planetary and space science}, volume = {104}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2014.09.016}, pages = {216 -- 233}, year = {2014}, language = {en} } @article{SpahnVieiraNetoGuimaraesetal.2014, author = {Spahn, Frank and Vieira Neto, E. and Guimaraes, A. H. F. and Gorban, A. N. and Brilliantov, Nikolai V.}, title = {A statistical model of aggregate fragmentation}, series = {New journal of physics : the open-access journal for physics}, volume = {16}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/16/1/013031}, pages = {11}, year = {2014}, abstract = {A statistical model of fragmentation of aggregates is proposed, based on the stochastic propagation of cracks through the body. The propagation rules are formulated on a lattice and mimic two important features of the process-a crack moves against the stress gradient while dissipating energy during its growth. We perform numerical simulations of the model for two-dimensional lattice and reveal that the mass distribution for small-and intermediate-size fragments obeys a power law, F(m) proportional to m(-3/2), in agreement with experimental observations. We develop an analytical theory which explains the detected power law and demonstrate that the overall fragment mass distribution in our model agrees qualitatively with that one observed in experiments.}, language = {en} } @article{SpahnPetzschmannSchmidtetal.2001, author = {Spahn, Frank and Petzschmann, Olaf and Schmidt, J{\"u}rgen and Sremcevic, Miodrag and Hertzsch, Jan-Martin}, title = {About the viscosity of granular gases : the force-free case versus granular gases under Keplarian differential rotation}, isbn = {3-540-41458-4}, year = {2001}, language = {en} } @article{BodrovaSchmidtSpahnetal.2012, author = {Bodrova, Anna and Schmidt, J{\"u}rgen and Spahn, Frank and Brilliantov, Nikolai V.}, title = {Adhesion and collisional release of particles in dense planetary rings}, series = {Icarus : international journal of solar system studies}, volume = {218}, journal = {Icarus : international journal of solar system studies}, number = {1}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2011.11.011}, pages = {60 -- 68}, year = {2012}, abstract = {We propose a simple theoretical model for aggregative and fragmentative collisions in Saturn's dense rings. In this model the ring matter consists of a bimodal size distribution: large (meter sized) boulders and a population of smaller particles (tens of centimeters down to dust). The small particles can adhesively stick to the boulders and can be released as debris in binary collisions of their carriers. To quantify the adhesion force we use the JKR theory (Johnson, K., Kendall, K., Roberts, A. [1971]. Proc. R. Soc. Lond. A 324, 301-313). The rates of release and adsorption of particles are calculated, depending on material parameters, sizes, and plausible velocity dispersions of carriers and debris particles. In steady state we obtain an expression for the amount of free debris relative to the fraction still attached to the carriers. In terms of this conceptually simple model a paucity of subcentimeter particles in Saturn's rings (French, R.G., Nicholson, P.D. [2000]. Icarus 145, 502-523; Marouf, E. et al. [2008]. Abstracts for "Saturn after Cassini-Huygens" Symposium, Imperial College London, UK, July 28 to August 1, p. 113) can be understood as a consequence of the increasing strength of adhesion (relative to inertial forces) for decreasing particle size. In this case particles smaller than a certain critical radius remain tightly attached to the surfaces of larger boulders, even when the boulders collide at their typical speed. Furthermore, we find that already a mildly increased velocity dispersion of the carrier-particles may significantly enhance the fraction of free debris particles, in this way increasing the optical depth of the system.}, language = {en} } @article{GuimaraesAlbersSpahnetal.2012, author = {Guimaraes, Ana H. F. and Albers, Nicole and Spahn, Frank and Seiss, Martin and Vieira-Neto, Ernesto and Brilliantov, Nikolai V.}, title = {Aggregates in the strength and gravity regime Particles sizes in Saturn's rings}, series = {Icarus : international journal of solar system studies}, volume = {220}, journal = {Icarus : international journal of solar system studies}, number = {2}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2012.06.005}, pages = {660 -- 678}, year = {2012}, abstract = {Particles in Saturn's main rings range in size from dust to kilometer-sized objects. Their size distribution is thought to be a result of competing accretion and fragmentation processes. While growth is naturally limited in tidal environments, frequent collisions among these objects may contribute to both accretion and fragmentation. As ring particles are primarily made of water ice attractive surface forces like adhesion could significantly influence these processes, finally determining the resulting size distribution. Here, we derive analytic expressions for the specific self-energy Q and related specific break-up energy Q(star) of aggregates. These expressions can be used for any aggregate type composed of monomeric constituents. We compare these expressions to numerical experiments where we create aggregates of various types including: regular packings like the face-centered cubic (fcc), Ballistic Particle Cluster Aggregates (BPCA), and modified BPCAs including e.g. different constituent size distributions. We show that accounting for attractive surface forces such as adhesion a simple approach is able to: (a) generally account for the size dependence of the specific break-up energy for fragmentation to occur reported in the literature, namely the division into "strength" and "gravity" regimes and (b) estimate the maximum aggregate size in a collisional ensemble to be on the order of a few tens of meters, consistent with the maximum particle size observed in Saturn's rings of about 10 m.}, language = {en} } @article{SpahnSchmidtAlbersetal.2006, author = {Spahn, Frank and Schmidt, J{\"u}rgen and Albers, Nicole and H{\"o}rning, Marcel and Makuch, Martin and Seiß, Martin and Kempf, Sascha and Srama, Ralf and Dikarev, Valeri and Helfert, Stefan and Moragas-Klostermeyer, Georg and Krivov, Alexander V. and Sremcevic, Miodrag and Tuzzolino, Anthony J. and Economou, Thanasis and Gr{\"u}n, Eberhard}, title = {Cassini dust measurements at Enceladus and implications for the origin of the E ring}, doi = {10.1126/science.1121375}, year = {2006}, language = {en} } @misc{SpahnSeiss2015, author = {Spahn, Frank and Seiss, Martin}, title = {Charges dropped}, series = {Nature physics}, volume = {11}, journal = {Nature physics}, number = {9}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, pages = {709 -- 710}, year = {2015}, language = {en} } @article{DzhanoevSchmidtLiuetal.2016, author = {Dzhanoev, Arsen R. and Schmidt, J. and Liu, X. and Spahn, Frank}, title = {Charging of small grains in a space plasma: Application to Jovian stream particles}, series = {International psychogeriatrics}, volume = {591}, journal = {International psychogeriatrics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527891}, pages = {647 -- 684}, year = {2016}, abstract = {Context. Most theoretical investigations of dust charging processes in space have treated the current balance condition as independent of grain size. However, for small grains, since they are often observed in space environments, a dependence on grain size is expected owing to secondary electron emission (SEE). Here, by the term "small" we mean a particle size comparable to the typical penetration depth for given primary electron energy. The results are relevant for the dynamics of small, charged dust particles emitted by the volcanic moon Io, which forms the Jovian dust streams. Aims. We revise the theory of charging of small (submicron sized) micrometeoroids to take into account a high production of secondary electrons for small grains immersed in an isotropic flux of electrons. We apply our model to obtain an improved estimate for the charge of the dust streams leaving the Jovian system, detected by several spacecraft. Methods. We apply a continuum model to describe the penetration of primary electrons in a grain and the emission of secondary electrons along the path. Averaging over an isotropic flux of primaries, we derive a new expression for the secondary electron yield, which can be used to express the secondary electron current on a grain. Results. For the Jupiter plasma environment we derive the surface potential of grains composed of NaCl (believed to be the major constituent of Jovian dust stream particles) or silicates. For small particles, the potential depends on grain size and the secondary electron current induces a sensitivity to material properties. As a result of the small particle effect, the estimates for the charging times and for the fractional charge fluctuations of NaCl grains obtained using our general approach to SEE give results qualitatively different from the analogous estimates derived from the traditional approach to SEE. We find that for the charging environment considered in this paper field emission does not limit the charging of NaCl grains.}, language = {en} } @misc{SpahnSachseSeissetal.2019, author = {Spahn, Frank and Sachse, Manuel and Seiss, Martin and Hsu, Hsiang-Wen and Kempf, Sascha and Horanyi, Mihaly}, title = {Circumplanetary Dust Populations}, series = {Space science reviews}, volume = {215}, journal = {Space science reviews}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-018-0577-3}, pages = {54}, year = {2019}, abstract = {We summarize the current state of observations of circumplanetary dust populations, including both dilute and dense rings and tori around the giant planets, ejecta clouds engulfing airless moons, and rings around smaller planetary bodies throughout the Solar System. We also discuss the theoretical models that enable these observations to be understood in terms of the sources, sinks and transport of various dust populations. The dynamics and resulting transport of the particles can be quite complex, due to the fact that their motion is influenced by neutral and plasma drag, radiation pressure, and electromagnetic forcesall in addition to gravity. The relative importance of these forces depends on the environment, as well as the makeup and size of the particles. Possible dust sources include the generation of ejecta particles by impacts, active volcanoes and geysers, and the capture of exogenous particles. Possible dust sinks include collisions with moons, rings, or the central planet, erosion due to sublimation and sputtering, even ejection and escape from the circumplanetary environment.}, language = {en} }