@article{SchaeferDechBittmann2021, author = {Schaefer, Laura and Dech, Silas and Bittmann, Frank}, title = {Adaptive force and emotionally related imaginations}, series = {Heliyon}, volume = {7}, journal = {Heliyon}, number = {8}, publisher = {Elsevier}, address = {London}, issn = {2405-8440}, doi = {10.1016/j.heliyon.2021.e07827}, pages = {13}, year = {2021}, abstract = {The link between emotions and motor control has been discussed for years. The measurement of the Adaptive Force (AF) provides the possibility to get insights into the adaptive control of the neuromuscular system in reaction to external forces. It was hypothesized that the holding isometric AF is especially vulnerable to disturbing inputs. Here, the behavior of the AF under the influence of positive (tasty) vs. negative (disgusting) food imaginations was investigated. The AF was examined in n = 12 cases using an objectified manual muscle test of the hip flexors, elbow flexors or pectoralis major muscle, performed by one of two experienced testers while the participants imagined their most tasty or most disgusting food. The reaction force and the limb position were measured by a handheld device. While the slope of force rises and the maximal AF did not differ significantly between tasty and disgusting imaginations (p > 0.05), the maximal isometric AF was significantly lower and the AF at the onset of oscillations was significantly higher under disgusting vs. tasty imaginations (both p = 0.001). A proper length tension control of muscles seems to be a crucial functional parameter of the neuromuscular system which can be impaired instantaneously by emotionally related negative imaginations. This might be a potential approach to evaluate somatic reactions to emotions.}, language = {en} } @article{BittmannDechSchaefer2023, author = {Bittmann, Frank and Dech, Silas and Schaefer, Laura}, title = {Another way to confuse motor control}, series = {Brain Sciences}, volume = {13}, journal = {Brain Sciences}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2076-3425}, doi = {10.3390/brainsci13071105}, pages = {20}, year = {2023}, abstract = {Sensorimotor control can be impaired by slacked muscle spindles. This was shown for reflex responses and, recently, also for muscular stability in the sense of Adaptive Force (AF). The slack in muscle spindles was generated by contracting the lengthened muscle followed by passive shortening. AF was suggested to specifically reflect sensorimotor control since it requires tension-length control in adaptation to an increasing load. This study investigated AF parameters in reaction to another, manually performed slack procedure in a preselected sample (n = 13). The AF of 11 elbow and 12 hip flexors was assessed by an objectified manual muscle test (MMT) using a handheld device. Maximal isometric AF was significantly reduced after manual spindle technique vs. regular MMT. Muscle lengthening started at 64.93 \& PLUSMN; 12.46\% of maximal voluntary isometric contraction (MVIC). During regular MMT, muscle length could be maintained stable until 92.53 \& PLUSMN; 10.12\% of MVIC. Hence, muscular stability measured by AF was impaired after spindle manipulation. Force oscillations arose at a significantly lower level for regular vs. spindle. This supports the assumption that they are a prerequisite for stable adaptation. Reduced muscular stability in reaction to slack procedures is considered physiological since sensory information is misled. It is proposed to use slack procedures to test the functionality of the neuromuscular system, which is relevant for clinical practice.}, language = {en} } @misc{SchaeferBittmann2017, author = {Schaefer, Laura and Bittmann, Frank}, title = {Are there two forms of isometric muscle action?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402084}, pages = {13}, year = {2017}, abstract = {Background In isometric muscle function, there are subjectively two different modes of performance: one can either hold isometrically - thus resist an impacting force - or push isometrically - therefore work against a stable resistance. The purpose of this study is to investigate whether or not two different isometric muscle actions - the holding vs. pushing one (HIMA vs PIMA) - can be distinguished by objective parameters. Methods Ten subjects performed two different measuring modes at 80\% of MVC realized by a special pneumatic system. During HIMA the subject had to resist the defined impacting force of the pneumatic system in an isometric position, whereby the force of the cylinder works in direction of elbow flexion against the subject. During PIMA the subject worked isometrically in direction of elbow extension against a stable position of the system. The signals of pressure, force, acceleration and mechanomyography/-tendography (MMG/MTG) of the elbow extensor (MMGtri/MTGtri) and the abdominal muscle (MMGobl) were recorded and evaluated concerning the duration of maintaining the force level (force endurance) and the characteristics of MMG-/MTG-signals. Statistical group differences comparing HIMA vs. PIMA were estimated using SPSS. Results Significant differences between HIMA and PIMA were especially apparent regarding the force endurance: During HIMA the subjects showed a decisively shorter time of stable isometric position (19 ± 8 s) in comparison with PIMA (41 ± 24 s; p = .005). In addition, during PIMA the longest isometric plateau amounted to 59.4\% of the overall duration time of isometric measuring, during HIMA it lasted 31.6\% (p = .000). The frequency of MMG/MTG did not show significant differences. The power in the frequency ranges of 8-15 Hz and 10-29 Hz was significantly higher in the MTGtri performing HIMA compared to PIMA (but not for the MMGs). The amplitude of MMG/MTG did not show any significant difference considering the whole measurement. However, looking only at the last 10\% of duration time (exhaustion), the MMGtri showed significantly higher amplitudes during PIMA. Conclusion The results suggest that under holding isometric conditions muscles exhaust earlier. That means that there are probably two forms of isometric muscle action. We hypothesize two potential reasons for faster yielding during HIMA: (1) earlier metabolic fatigue of the muscle fibers and (2) the complexity of neural control strategies.}, language = {en} } @article{SchaeferBittmann2017, author = {Schaefer, Laura and Bittmann, Frank}, title = {Are there two forms of isometric muscle action?}, series = {BMC sports science, medicine \& rehabilitation}, volume = {9}, journal = {BMC sports science, medicine \& rehabilitation}, publisher = {BioMed Central}, address = {London}, doi = {10.1186/s13102-017-0075-z}, year = {2017}, abstract = {Background In isometric muscle function, there are subjectively two different modes of performance: one can either hold isometrically - thus resist an impacting force - or push isometrically - therefore work against a stable resistance. The purpose of this study is to investigate whether or not two different isometric muscle actions - the holding vs. pushing one (HIMA vs PIMA) - can be distinguished by objective parameters. Methods Ten subjects performed two different measuring modes at 80\% of MVC realized by a special pneumatic system. During HIMA the subject had to resist the defined impacting force of the pneumatic system in an isometric position, whereby the force of the cylinder works in direction of elbow flexion against the subject. During PIMA the subject worked isometrically in direction of elbow extension against a stable position of the system. The signals of pressure, force, acceleration and mechanomyography/-tendography (MMG/MTG) of the elbow extensor (MMGtri/MTGtri) and the abdominal muscle (MMGobl) were recorded and evaluated concerning the duration of maintaining the force level (force endurance) and the characteristics of MMG-/MTG-signals. Statistical group differences comparing HIMA vs. PIMA were estimated using SPSS. Results Significant differences between HIMA and PIMA were especially apparent regarding the force endurance: During HIMA the subjects showed a decisively shorter time of stable isometric position (19 ± 8 s) in comparison with PIMA (41 ± 24 s; p = .005). In addition, during PIMA the longest isometric plateau amounted to 59.4\% of the overall duration time of isometric measuring, during HIMA it lasted 31.6\% (p = .000). The frequency of MMG/MTG did not show significant differences. The power in the frequency ranges of 8-15 Hz and 10-29 Hz was significantly higher in the MTGtri performing HIMA compared to PIMA (but not for the MMGs). The amplitude of MMG/MTG did not show any significant difference considering the whole measurement. However, looking only at the last 10\% of duration time (exhaustion), the MMGtri showed significantly higher amplitudes during PIMA. Conclusion The results suggest that under holding isometric conditions muscles exhaust earlier. That means that there are probably two forms of isometric muscle action. We hypothesize two potential reasons for faster yielding during HIMA: (1) earlier metabolic fatigue of the muscle fibers and (2) the complexity of neural control strategies.}, language = {en} } @article{SchaeferBittmann2017, author = {Schaefer, Laura and Bittmann, Frank}, title = {Are there two forms of isometric muscle action? Results of the experimental study support a distinction between a holding and a pushing isometric muscle function}, series = {BMC sports science, medicine \& rehabilitation}, volume = {9}, journal = {BMC sports science, medicine \& rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-017-0075-z}, pages = {13}, year = {2017}, abstract = {Background: In isometric muscle function, there are subjectively two different modes of performance: one can either hold isometrically - thus resist an impacting force - or push isometrically -therefore work against a stable resistance. The purpose of this study is to investigate whether or not two different isometric muscle actions - the holding vs. pushing one (HIMA vs PIMA) - can be distinguished by objective parameters. Methods: Ten subjects performed two different measuring modes at 80\% of MVC realized by a special pneumatic system. During HIMA the subject had to resist the defined impacting force of the pneumatic system in an isometric position, whereby the force of the cylinder works in direction of elbow flexion against the subject. During PIMA the subject worked isometrically in direction of elbow extension against a stable position of the system. The signals of pressure, force, acceleration and mechanomyography/-tendography (MMG/MTG) of the elbow extensor (MMGtri/MTGtri) and the abdominal muscle (MMGobl) were recorded and evaluated concerning the duration of maintaining the force level (force endurance) and the characteristics of MMG-/MTG-signals. Statistical group differences comparing HIMA vs. PIMA were estimated using SPSS. Results: Significant differences between HIMA and PIMA were especially apparent regarding the force endurance: During HIMA the subjects showed a decisively shorter time of stable isometric position (19 +/- 8 s) in comparison with PIMA (41 +/- 24 s; p = .005). In addition, during PIMA the longest isometric plateau amounted to 59.4\% of the overall duration time of isometric measuring, during HIMA it lasted 31.6\% (p = .000). The frequency of MMG/MTG did not show significant differences. The power in the frequency ranges of 8-15 Hz and 10-29 Hz was significantly higher in the MTGtri performing HIMA compared to PIMA (but not for the MMGs). The amplitude of MMG/MTG did not show any significant difference considering the whole measurement. However, looking only at the last 10\% of duration time (exhaustion), the MMGtri showed significantly higher amplitudes during PIMA. Conclusion: The results suggest that under holding isometric conditions muscles exhaust earlier. That means that there are probably two forms of isometric muscle action. We hypothesize two potential reasons for faster yielding during HIMA: (1) earlier metabolic fatigue of the muscle fibers and (2) the complexity of neural control strategies.}, language = {en} } @misc{DechBittmannSchaefer2021, author = {Dech, Silas and Bittmann, Frank and Schaefer, Laura}, title = {Assessment of the Adaptive Force of Elbow Extensors in Healthy Subjects Quantified by a Novel Pneumatically Driven Measurement System with Considerations of Its Quality Criteria}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {710}, issn = {1866-8364}, doi = {10.25932/publishup-51095}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-510950}, pages = {25}, year = {2021}, abstract = {Adaptive Force (AF) reflects the capability of the neuromuscular system to adapt adequately to external forces with the intention of maintaining a position or motion. One specific approach to assessing AF is to measure force and limb position during a pneumatically applied increasing external force. Through this method, the highest (AFmax), the maximal isometric (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax) can be determined. The main question of the study was whether the AFisomax is a specific and independent parameter of muscle function compared to other maximal forces. In 13 healthy subjects (9 male and 4 female), the maximal voluntary isometric contraction (pre- and post-MVIC), the three AF parameters and the MVIC with a prior concentric contraction (MVICpri-con) of the elbow extensors were measured 4 times on two days. Arithmetic mean (M) and maximal (Max) torques of all force types were analyzed. Regarding the reliability of the AF parameters between days, the mean changes were 0.31-1.98 Nm (0.61\%-5.47\%, p = 0.175-0.552), the standard errors of measurements (SEM) were 1.29-5.68 Nm (2.53\%-15.70\%) and the ICCs(3,1) = 0.896-0.996. M and Max of AFisomax, AFmax and pre-MVIC correlated highly (r = 0.85-0.98). The M and Max of AFisomax were significantly lower (6.12-14.93 Nm; p ≤ 0.001-0.009) and more variable between trials (coefficient of variation (CVs) ≥ 21.95\%) compared to those of pre-MVIC and AFmax (CVs ≤ 5.4\%). The results suggest the novel measuring procedure is suitable to reliably quantify the AF, whereby the presented measurement errors should be taken into consideration. The AFisomax seems to reflect its own strength capacity and should be detected separately. It is suggested its normalization to the MVIC or AFmax could serve as an indicator of a neuromuscular function.}, language = {en} } @article{DechBittmannSchaefer2021, author = {Dech, Silas and Bittmann, Frank and Schaefer, Laura}, title = {Assessment of the adaptive force of Elbow extensors in healthy subjects quantified by a novel pneumatically driven measurement system with considerations of its quality criteria}, series = {Diagnostics : open access journal}, volume = {11}, journal = {Diagnostics : open access journal}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2075-4418}, doi = {10.3390/diagnostics11060923}, pages = {23}, year = {2021}, abstract = {Adaptive Force (AF) reflects the capability of the neuromuscular system to adapt adequately to external forces with the intention of maintaining a position or motion. One specific approach to assessing AF is to measure force and limb position during a pneumatically applied increasing external force. Through this method, the highest (AFmax), the maximal isometric (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax) can be determined. The main question of the study was whether the AFisomax is a specific and independent parameter of muscle function compared to other maximal forces. In 13 healthy subjects (9 male and 4 female), the maximal voluntary isometric contraction (pre- and post-MVIC), the three AF parameters and the MVIC with a prior concentric contraction (MVICpri-con) of the elbow extensors were measured 4 times on two days. Arithmetic mean (M) and maximal (Max) torques of all force types were analyzed. Regarding the reliability of the AF parameters between days, the mean changes were 0.31-1.98 Nm (0.61\%-5.47\%, p = 0.175-0.552), the standard errors of measurements (SEM) were 1.29-5.68 Nm (2.53\%-15.70\%) and the ICCs(3,1) = 0.896-0.996. M and Max of AFisomax, AFmax and pre-MVIC correlated highly (r = 0.85-0.98). The M and Max of AFisomax were significantly lower (6.12-14.93 Nm; p ≤ 0.001-0.009) and more variable between trials (coefficient of variation (CVs) ≥ 21.95\%) compared to those of pre-MVIC and AFmax (CVs ≤ 5.4\%). The results suggest the novel measuring procedure is suitable to reliably quantify the AF, whereby the presented measurement errors should be taken into consideration. The AFisomax seems to reflect its own strength capacity and should be detected separately. It is suggested its normalization to the MVIC or AFmax could serve as an indicator of a neuromuscular function.}, language = {en} } @misc{DechBittmannSchaefer2020, author = {Dech, Silas and Bittmann, Frank and Schaefer, Laura}, title = {Behavior of oxygen saturation and blood filling in the venous capillary system of the biceps brachii muscle during a fatiguing isometric action}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe 618}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe 618}, number = {618}, issn = {1866-8364}, doi = {10.25932/publishup-46016}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460166}, pages = {79 -- 87}, year = {2020}, abstract = {The objective of the study is to develop a better understanding of the capillary circulation in contracting muscles. Ten subjects were measured during a submaximal fatiguing isometric muscle action by use of the O2C spectrophotometer. In all measurements the capillary-venous oxygen saturation of hemoglobin (SvO2) decreases immediately after the start of loading and levels off into a steady state. However, two different patterns (type I and type II) emerged. They differ in the extent of deoxygenation (-10.37 ±2.59 percent points (pp) vs. -33.86 ±17.35 pp, P = .008) and the behavior of the relative hemoglobin amount (rHb). Type I reveals a positive rank correlation of SvO2 and rHb (? = 0.735, P <.001), whereas a negative rank correlation (? = -0.522, P <.001) occurred in type II, since rHb decreases until a reversal point, then increases averagely 13\% above the baseline value and levels off into a steady state. The results reveal that a homeostasis of oxygen delivery and consumption during isometric muscle actions is possible. A rough distinction in two types of regulation is suggested.}, language = {en} } @article{DechBittmannSchaefer2020, author = {Dech, Silas and Bittmann, Frank and Schaefer, Laura}, title = {Behavior of oxygen saturation and blood filling in the venous capillary system of the biceps brachii muscle during a fatiguing isometric action}, series = {European Journal of Translational Myology}, volume = {30}, journal = {European Journal of Translational Myology}, number = {1}, publisher = {Unipress}, address = {Padova}, issn = {2037-7460}, doi = {10.4081/ejtm.2019.8800}, pages = {79 -- 87}, year = {2020}, abstract = {The objective of the study is to develop a better understanding of the capillary circulation in contracting muscles. Ten subjects were measured during a submaximal fatiguing isometric muscle action by use of the O2C spectrophotometer. In all measurements the capillary-venous oxygen saturation of hemoglobin (SvO2) decreases immediately after the start of loading and levels off into a steady state. However, two different patterns (type I and type II) emerged. They differ in the extent of deoxygenation (-10.37 ±2.59 percent points (pp) vs. -33.86 ±17.35 pp, P = .008) and the behavior of the relative hemoglobin amount (rHb). Type I reveals a positive rank correlation of SvO2 and rHb (? = 0.735, P <.001), whereas a negative rank correlation (? = -0.522, P <.001) occurred in type II, since rHb decreases until a reversal point, then increases averagely 13\% above the baseline value and levels off into a steady state. The results reveal that a homeostasis of oxygen delivery and consumption during isometric muscle actions is possible. A rough distinction in two types of regulation is suggested.}, language = {en} } @article{SchaeferBittmann2023, author = {Schaefer, Laura and Bittmann, Frank}, title = {Case report}, series = {Frontiers in medicine}, volume = {9}, journal = {Frontiers in medicine}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-858X}, doi = {10.3389/fmed.2022.879971}, pages = {10}, year = {2023}, abstract = {The increasing prevalence of Long COVID is an imminent public health disaster, and established approaches have not provided adequate diagnostics or treatments. Recently, anesthetic blockade of the stellate ganglion was reported to improve Long COVID symptoms in a small case series, purportedly by "rebooting" the autonomic nervous system. Here, we present a novel diagnostic approach based on the Adaptive Force (AF), and report sustained positive outcome for one severely affected Long COVID patient using individualized pulsed electromagnetic field (PEMF) at the area C7/T1. AF reflects the capacity of the neuromuscular system to adapt adequately to external forces in an isometric holding manner. In case, maximal isometric AF (AFiso(max)) is exceeded, the muscle merges into eccentric muscle action. Thereby, the force usually increases further until maximal AF (AFmax) is reached. In case adaptation is optimal, AFiso(max) is similar to 99-100\% of AFmax. This holding capacity (AFiso(max)) was found to be vulnerable to disruption by unpleasant stimulus and, hence, was regarded as functional parameter. AF was assessed by an objectified manual muscle test using a handheld device. Prior to treatment, AFiso(max) was considerably lower than AFmax for hip flexors (62 N = similar to 28\% AFmax) and elbow flexors (71 N = similar to 44\% AFmax); i.e., maximal holding capacity was significantly reduced, indicating dysfunctional motor control. We tested PEMF at C7/T1, identified a frequency that improved neuromuscular function, and applied it for similar to 15 min. Immediately post-treatment, AFiso(max) increased to similar to 210 N (similar to 100\% AFmax) at hip and 184 N (similar to 100\% AFmax) at elbow. Subjective Long COVID symptoms resolved the following day. At 4 weeks post-treatment, maximal holding capacity was still on a similarly high level as for immediately post-treatment (similar to 100\% AFmax) and patient was symptom-free. At 6 months the patient's Long COVID symptoms have not returned. This case report suggests (1) AF could be a promising diagnostic for post-infectious illness, (2) AF can be used to test effective treatments for post-infectious illness, and (3) individualized PEMF may resolve post-infectious symptoms.}, language = {en} }