@article{HohmannFehrKirstenetal.2008, author = {Hohmann, Andreas and Fehr, Ulrich and Kirsten, Robert and Kr{\"u}ger, Tom}, title = {Biomechanical analysis of the backstroke start technique in swimming}, issn = {1612-5770}, year = {2008}, language = {en} } @misc{PrieskeKruegerAehleetal.2018, author = {Prieske, Olaf and Kr{\"u}ger, Tom and Aehle, Markus and Bauer, Erik and Granacher, Urs}, title = {Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {383}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409645}, pages = {10}, year = {2018}, abstract = {Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45-60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40\% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5\% for RST [90\%CI: (-1.1\%;10.1\%), d = 1.23] and 2.6\% for TPT [90\%CI: (0.4\%;4.8\%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to -6.3\% for RST [90\%CI: (-11.4\%;-1.1\%), d = 1.45) and -2.7\% for TPT [90\%CI: (-4.2\%;-1.2\%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development.}, language = {en} } @article{PrieskeKruegerAehleetal.2018, author = {Prieske, Olaf and Kr{\"u}ger, Tom and Aehle, Markus and Bauer, Erik and Granacher, Urs}, title = {Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00156}, pages = {1 -- 10}, year = {2018}, abstract = {Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45-60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40\% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5\% for RST [90\%CI: (-1.1\%;10.1\%), d = 1.23] and 2.6\% for TPT [90\%CI: (0.4\%;4.8\%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to -6.3\% for RST [90\%CI: (-11.4\%;-1.1\%), d = 1.45) and -2.7\% for TPT [90\%CI: (-4.2\%;-1.2\%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development.}, language = {en} } @article{PrieskeMuehlbauerMuelleretal.2013, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and M{\"u}ller, Steffen and Kr{\"u}ger, Tom and Kibele, Armin and Behm, David George and Granacher, Urs}, title = {Effects of surface instability on neuromuscular performance during drop jumps and landings}, series = {European journal of applied physiology}, volume = {113}, journal = {European journal of applied physiology}, number = {12}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-013-2724-6}, pages = {2943 -- 2951}, year = {2013}, abstract = {The purpose of this study was to investigate the effects of surface instability on measures of performance and activity of leg and trunk muscles during drop jumps and landings. Drop jumps and landings were assessed on a force plate under stable and unstable (balance pad on top of the force plate) conditions. Performance measures (contact time, jump height, peak ground reaction force) and electromyographic (EMG) activity of leg and trunk muscles were tested in 27 subjects (age 23 +/- A 3 years) during different time intervals (preactivation phase, braking phase, push-off phase). The performance of drop jumps under unstable compared to stable conditions produced a decrease in jump height (9 \%, p < 0.001, f = 0.92) and an increase in peak ground reaction force (5 \%, p = 0.022, f = 0.72), and time for braking phase (12 \%, p < 0.001, f = 1.25). When performing drop jumps on unstable compared to stable surfaces, muscle activity was reduced in the lower extremities during the preactivation, braking and push-off phases (11-25 \%, p < 0.05, 0.48 a parts per thousand currency sign f a parts per thousand currency sign 1.23). Additionally, when landing on unstable compared to stable conditions, reduced lower limb muscle activities were observed during the preactivation phase (7-60 \%, p < 0.05, 0.50 a parts per thousand currency sign f a parts per thousand currency sign 3.62). Trunk muscle activity did not significantly differ between the test conditions for both jumping and landing tasks. The present findings indicate that modified feedforward mechanisms in terms of lower leg muscle activities during the preactivation phase and/or possible alterations in leg muscle activity shortly after ground contact (i.e., braking phase) are responsible for performance decrements during jumping on unstable surfaces.}, language = {en} } @article{MoellerKittelKruegeretal.2008, author = {M{\"o}ller, Sebastian and Kittel, Ren{\´e} and Kr{\"u}ger, Tom and Srunk, Soeren and Rosenblum, Michael and Wick, Ditmar}, title = {Movement profiles of the balance breaking (Kuzushi) of top judoka}, isbn = {978-3-8322-8390-2}, year = {2008}, language = {en} } @article{MoellerKittelKruegeretal.2009, author = {M{\"o}ller, Sebastian and Kittel, Ren{\´e} and Kr{\"u}ger, Tom and Sprunk, S{\"o}ren and Wick, Ditmar and Rosenblum, Michael}, title = {Movement profiles of the balance breaking (Kuzushi) of top judoka}, isbn = {978-3-8322-8390-2}, year = {2009}, language = {en} } @article{PrieskeMuehlbauerKruegeretal.2015, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Kibele, Armin and Behm, David George and Granacher, Urs}, title = {Role of the trunk during drop jumps on stable and unstable surfaces}, series = {European journal of applied physiology}, volume = {115}, journal = {European journal of applied physiology}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-014-3004-9}, pages = {139 -- 146}, year = {2015}, abstract = {The present study investigated associations between trunk muscle strength, jump performance, and lower limb kinematics during drop jumps on stable and unstable surfaces. Next to this behavioral approach, correlations were also computed on a neuromuscular level between trunk and leg muscle activity during the same test conditions. Twenty-nine healthy and physically active subjects (age 23 +/- A 3 years) were enrolled in this study. Peak isokinetic torque (PIT) of the trunk flexors and extensors was assessed separately on an isokinetic device. In addition, tests included drop jumps (DJ) on a force plate under stable and unstable (i.e., balance pad on top of the force plate) surfaces. Lower limb kinematics as well as electromyographic activity of selected trunk and leg muscles were analyzed. Significant positive but small correlations (0.50 a parts per thousand currency sign r a parts per thousand currency sign 0.66, p < 0.05) were detected between trunk extensor PIT and athletic performance measures (i.e., DJ height, DJ performance index), irrespective of surface condition. Further, significant negative but small correlation coefficients were examined between trunk extensor PIT and knee valgus motion under stable and unstable surface conditions (-0.48 a parts per thousand currency sign r a parts per thousand currency sign -0.45, p < 0.05). In addition, significant positive but small correlations (0.45 a parts per thousand currency sign r a parts per thousand currency sign 0.68, p < 0.05) were found between trunk and leg muscle activity, irrespective of surface condition. Behavioral and neuromuscular data from this study indicate that, irrespective of the surface condition (i.e., jumping on stable or unstable ground), the trunk plays a minor role for leg muscle performance/activity during DJ. This implies only limited effects of trunk muscle strengthening on jump performance in the stretch-shortening cycle.}, language = {en} } @article{PrieskeMuehlbauerKruegeretal.2015, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and Kr{\"u}ger, Tom and Kibele, A. and Behm, David George and Granacher, Urs}, title = {Sex-Specific effects of surface instability on drop jump and landing biomechanics}, series = {International journal of sports medicine}, volume = {36}, journal = {International journal of sports medicine}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0034-1384549}, pages = {75 -- 81}, year = {2015}, abstract = {This study investigated sex-specific effects of surface instability on kinetics and lower extremity kinematics during drop jumping and landing. Ground reaction forces as well as knee valgus and flexion angles were tested in 14 males (age: 23 +/- 2 years) and 14 females (age: 24 +/- 3 years) when jumping and landing on stable and unstable surfaces. Jump height was found to be significantly lower (9 \%, p < 0.001) when drop jumps were performed on unstable vs. stable surface. Significantly higher peak ground reaction forces were observed when jumping was performed on unstable vs. stable surfaces (5 \%, p = 0.022). Regarding frontal plane kinematics during jumping and landing, knee valgus angles were higher on unstable compared to stable surfaces (1932 \%, p < 0.05). Additionally, at the onset of ground contact during landings, females showed higher knee valgus angles than males (222 \%, p = 0.027). Sagittal plane kinematics indicated significantly smaller knee flexion angles (6-35 \%, p < 0.05) when jumping and landing on unstable vs. stable surfaces. During drop jumps and landings, women showed smaller knee flexion angles at ground contact compared to men (27-33 \%, p < 0.05). These findings imply that knee motion strategies were modified by surface instability and sex during drop jumps and landings.}, language = {en} } @article{Krueger2009, author = {Kr{\"u}ger, Tom}, title = {The effect of laterality on young athlets in flat water canoeing}, isbn = {978-82-502-0420-1}, year = {2009}, language = {en} } @article{Krueger2009, author = {Kr{\"u}ger, Tom}, title = {The effect of laterality on young athlets in flat water canoeing}, issn = {0959-3020}, year = {2009}, language = {en} }