@misc{UestuenBoernke2014, author = {Uestuen, Suayib and Boernke, Frederik}, title = {Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways}, series = {Frontiers in plant science}, volume = {5}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2014.00736}, pages = {6}, year = {2014}, abstract = {In eukaryotes, regulated protein turnover is required during many cellular processes, including defense against pathogens. Ubiquitination and degradation of ubiquitinated proteins via the ubiquitin proteasome system (UPS) is the main pathway for the turnover of intracellular proteins in eukaryotes. The extensive utilization of the UPS in host cells makes it an ideal pivot for the manipulation of cellular processes by pathogens. Like many other Gram-negative bacteria, Xanthomonas species secrete a suite of type-III effector proteins (T3Es) into their host cells to promote virulence. Some of these T3Es exploit the plant UPS to interfere with immunity. This review summarizes T3E examples from the genus Xanthomonas with a proven or suggested interaction with the host UPS or UPS-like systems and also discusses the apparent paradox that arises from the presence of T3Es that inhibit the UPS in general while others rely on its activity for their function.}, language = {en} } @article{WimmelbacherBoernke2014, author = {Wimmelbacher, Matthias and Boernke, Frederik}, title = {Redox activity of thioredoxin z and fructokinase-like protein 1 is dispensable for autotrophic growth of Arabidopsis thaliana}, series = {Journal of experimental botany}, volume = {65}, journal = {Journal of experimental botany}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/eru122}, pages = {2405 -- 2413}, year = {2014}, abstract = {Redox modulation of protein activity by thioredoxins (TRXs) plays a key role in cellular regulation. Thioredoxin z (TRX z) and its interaction partner fructokinase-like protein 1 (FLN1) represent subunits of the plastid-encoded RNA polymerase (PEP), suggesting a role of both proteins in redox regulation of chloroplast gene expression. Loss of TRX z or FLN1 expression generates a PEP-deficient phenotype and renders the plants incapable to grow autotrophically. This study shows that PEP function in trx z and fln1 plants can be restored by complementation with redox-inactive TRX z C106S and FLN1 C(105/106)A protein variants, respectively. The complemented plants showed wild-type levels of chloroplast gene expression and were restored in photosynthetic capacity, indicating that redox regulation of PEP through TRX z/FLN1 per se is not essential for autotrophic growth. Promoter-reporter gene studies indicate that TRX z and FLN1 are expressed during early phases of leaf development while expression ceases at maturation. Taken together, our data support a model in which TRX z and FLN1 are essential structural components of the PEP complex and their redox activity might only play a role in the fine tuning of PEP function.}, language = {en} } @article{NietzscheSchiesslBoernke2014, author = {Nietzsche, Madlen and Schiessl, Ingrid and Boernke, Frederik}, title = {The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell and stimulus type-specific SnRK1 signaling in plants}, series = {Frontiers in plant science}, volume = {5}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2014.00054}, pages = {13}, year = {2014}, abstract = {In plants, SNF1-related kinase (SnRK1) responds to the availability of carbohydrates as well as to environmental stresses by down-regulating ATP consuming biosynthetic processes, while stimulating energy-generating catabolic reactions through gene expression and post-transcriptional regulation. The functional SnRK1 complex is a heterotrimer where the catalytic alpha subunit associates with a regulatory beta subunit and an activating gamma subunit. Several different metabolites as well as the hormone abscisic acid (ABA) have been shown to modulate SnRK1 activity in a cell- and stimulus-type specific manner. It has been proposed that tissue- or stimulus-specific expression of adapter proteins mediating SnRK1 regulation can at least partly explain the differences observed in SnRK1 signaling. By using yeast two-hybrid and in planta bi-molecular fluorescence complementation assays we were able to demonstrate that proteins containing the domain of unknown function (DUF) 581 could interact with both isoforms of the SnRK1 alpha subunit (AKIN10/11) of Arabidopsis. A structure/function analysis suggests that the DUF581 is a generic SnRK1 interaction module and co-expression with DUF581 proteins in plant cells leads to reallocation of the kinase to specific regions within the nucleus. Yeast two-hybrid analyses suggest that SnRK1 and DUF581 proteins share common interaction partners inside the nucleus. The analysis of available microarray data implies that expression of the 19 members of the DUF581 encoding gene family in Arabidopsis is differentially regulated by hormones and environmental cues, indicating specialized functions of individual family members. We hypothesize that DUF581 proteins could act as mediators conferring tissue- and stimulus-type specific differences in SnRK1 regulation.}, language = {en} } @misc{Boernke2014, author = {Boernke, Frederik}, title = {The complex becomes more complex: protein-protein interactions of SnRK1 with DUF581 family proteins provide a framework for cell- and stimulus type-specific SnRK1 signaling in plants (vol 5, 54, 2014)}, series = {Frontiers in plant science}, volume = {5}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2014.00693}, pages = {1}, year = {2014}, language = {en} }