@article{SoliveresvanderPlasManningetal.2016, author = {Soliveres, Santiago and van der Plas, Fons and Manning, Peter and Prati, Daniel and Gossner, Martin M. and Renner, Swen C. and Alt, Fabian and Arndt, Hartmut and Baumgartner, Vanessa and Binkenstein, Julia and Birkhofer, Klaus and Blaser, Stefan and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Heinze, Johannes and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Kleinebecker, Till and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Overmann, J{\"o}rg and Pasalic, Esther and Rillig, Matthias C. and Schaefer, H. Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Sikorski, Johannes and Socher, Stephanie A. and Solly, Emily F. and Sonnemann, Ilja and Sorkau, Elisabeth and Steckel, Juliane and Steffan-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and T{\"u}rke, Manfred and Venter, Paul C. and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Fischer, Markus and Allan, Eric}, title = {Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality}, series = {Nature : the international weekly journal of science}, volume = {536}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature19092}, pages = {456 -- +}, year = {2016}, language = {en} } @article{Heinze2022, author = {Heinze, Johannes}, title = {Correction to: Heinze, Johannes: Herbivory by aboveground insects impacts plant root morphological traits. - Plant Ecology. - 221 (2020). - S. 725 - 732}, series = {Plant ecology : an international journal}, volume = {223}, journal = {Plant ecology : an international journal}, number = {115}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-021-01194-6}, year = {2022}, language = {en} } @article{SchoepkeHeinzePaetzigetal.2019, author = {Sch{\"o}pke, Benito and Heinze, Johannes and P{\"a}tzig, Marlene and Heinken, Thilo}, title = {Do dispersal traits of wetland plant species explain tolerance against isolation effects in naturally fragmented habitats?}, series = {Plant ecology : an international journal}, volume = {220}, journal = {Plant ecology : an international journal}, number = {9}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-019-00955-8}, pages = {801 -- 815}, year = {2019}, abstract = {The effects of habitat fragmentation and isolation on plant species richness have been verified for a wide range of anthropogenically fragmented habitats, but there is currently little information about their effects in naturally small and isolated habitats. We tested whether habitat area, heterogeneity, and isolation affect the richness of wetland vascular plant species in kettle holes, i.e., small glacially created wetlands, in an agricultural landscape of 1 km(2) in NE Germany. We compared fragmentation effects with those of forest fragments in the same landscape window. Since wetland and forest species might differ in their tolerance to isolation, and because isolation effects on plant species may be trait dependent, we asked which key life history traits might foster differences in isolation tolerance between wetland and forest plants. We recorded the flora and vegetation types in 83 isolated sites that contained 81 kettle holes and 25 forest fragments. Overall, the number of wetland species increased with increasing area and heterogeneity, i.e., the number of vegetation types, while area was not a surrogate for heterogeneity in these naturally fragmented systems. Isolation did not influence the number of wetland species but decreased the number of forest species. We also found that seeds of wetland species were on average lighter, more persistent and better adapted to epizoochory, e.g., by waterfowl, than seeds of forest species. Therefore, we suggest that wetland species are more tolerant to isolation than forest species due to their higher dispersal potential in space and time, which may counterbalance the negative effects of isolation.}, language = {en} } @article{Heinze2020, author = {Heinze, Johannes}, title = {Herbivory by aboveground insects impacts plant root morphological traits}, series = {Plant ecology : an international journal}, volume = {221}, journal = {Plant ecology : an international journal}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-020-01045-w}, pages = {725 -- 732}, year = {2020}, abstract = {Aboveground herbivory induces physiological responses, like the release of belowground chemical defense and storage of secondary metabolites, as well as physical responses in plants, like increased root biomass production. However, studies on effects of aboveground herbivory on root morphology are scarce and until now no study tested herbivory effects under natural conditions for a large set of plant species. Therefore, in a field experiment on plant-soil interactions, I investigated the effect of aboveground insect herbivory on root morphological traits of 20 grassland plant species. For 9 of the 20 species, all individuals showed shoot damage in the presence of insect herbivores, but no damage in insect herbivore exclusions. In these 9 species root biomass increased and root morphological traits changed under herbivory towards thinner roots with increased specific root surface. In contrast, the remaining species did not differ in the number of individuals damaged, root biomass nor morphological traits with herbivores present vs. absent. The fact that aboveground herbivory resulted in thinner roots with increased specific root surface area for all species in which the herbivore exclusion manipulation altered shoot damage might indicate that plants increase nutrient uptake in response to herbivory. However, more importantly, results provide empirical evidence that aboveground herbivory impacts root morphological traits of plants. As these traits are important for the occupation of soil space, uptake processes, decomposition and interactions with soil biota, results suggest that herbivory-induced changes in root morphology might be of importance for plant-soil feedbacks and plant-plant competition.}, language = {en} } @article{MuellerHeinzeJoshietal.2014, author = {M{\"u}ller, J{\"o}rg and Heinze, Johannes and Joshi, Jasmin Radha and Boch, Steffen and Klaus, Valentin H. and Fischer, Markus and Prati, Daniel}, title = {Influence of experimental soil disturbances on the diversity of plants in agricultural grasslands}, series = {Journal of plant ecology}, volume = {7}, journal = {Journal of plant ecology}, number = {6}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1752-9921}, doi = {10.1093/jpe/rtt062}, pages = {509 -- 517}, year = {2014}, abstract = {Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account. Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12\% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.}, language = {en} } @article{HeinzeBergmannRilligetal.2015, author = {Heinze, Johannes and Bergmann, Joana and Rillig, Matthias C. and Joshi, Jasmin Radha}, title = {Negative biotic soil-effects enhance biodiversity by restricting potentially dominant plant species in grasslands}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {17}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {3}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2015.03.002}, pages = {227 -- 235}, year = {2015}, abstract = {Interactions between soil microorganisms and plants can play a vital role for plant fitness and therefore also for plant community composition and biodiversity. However, little is known about how biotic plant soil interactions influence the local dominance and abundance of plant species and whether specific taxonomic or functional groups of plants are differentially affected by such biotic soil-effects. In two greenhouse experiments, we tested the biotic soil-effects of 33 grassland species differing in individual size and local abundance. We hypothesized that large plants that are not locally dominant (despite their size-related competitive advantage enabling them to potentially outshade competitors) are most strongly limited by negative biotic soil-effects. We sampled soils at the opposite ends of a gradient in land-use intensity in temperate grasslands to account for putative modulating effects of land-use intensity on biotic soil-effects. As hypothesized, large, but non-dominant species (especially grasses) experienced more negative biotic soil-effects compared with small and abundant plant species. Land-use intensity had contrasting effects on grasses and herbs resulting in more negative biotic soil-effects for grasses in less intensively managed grasslands. We conclude that biotic soil-effects contribute to the control of potentially dominant plants and hence enable species coexistence and biodiversity especially in species-rich less intensively managed grasslands.}, language = {en} } @article{HeinzeJoshi2017, author = {Heinze, Johannes and Joshi, Jasmin Radha}, title = {Plant-soil feedback effects can be masked by aboveground herbivory under natural field conditions}, series = {Oecologia}, volume = {186}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-017-3997-y}, pages = {235 -- 246}, year = {2017}, abstract = {For plants, herbivory and interactions with their surrounding soil ecosystem are crucial factors influencing individual performance and plant-community composition. Until now, research has mostly focused on individual effects of herbivory or plant-soil feedbacks (PSFs) on plant growth and community composition, but few studies have explicitly investigated herbivory in the context of PSFs. These few studies, however, were performed under greenhouse conditions even though PSFs and herbivory may differ between greenhouse and field conditions. Therefore, we performed a field experiment in a grassland, testing the growth responses of three grass species that consistently differ in local abundance, on soils previously conditioned by these species. We tested these PSF effects for the three species both in the presence and in the absence of aboveground herbivores. Without herbivores, the two subdominant species suffered from negative PSF effects. However, in the presence of herbivores and on heterospecific soils, the same two species experienced a significant loss of shoot biomass, whereas, in contrast, enhanced root growth was observed on conspecific soils, resulting in overall neutral PSF effects. The dominant species was not damaged by herbivores and showed overall neutral PSF effects in the field with and without herbivores. Our study provides empirical evidence that negative PSF effects that exist under natural field conditions in grasslands can be overwhelmed by aboveground herbivory. Hence, potential PSF effects might not be detected in the field, because other abiotic and biotic interactions such as aboveground herbivory have stronger effects on plant performance and might therefore mask or override these PSF effects.}, language = {en} } @article{HeinzeSitteSchindhelmetal.2016, author = {Heinze, Johannes and Sitte, Mario and Schindhelm, Anne and Wright, J. and Joshi, Jasmin Radha}, title = {Plant-soil feedbacks: a comparative study on the relative importance of soil feedbacks in the greenhouse versus the field}, series = {Oecologia}, volume = {181}, journal = {Oecologia}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-016-3591-8}, pages = {559 -- 569}, year = {2016}, abstract = {Interactions between plants and soil microorganisms influence individual plant performance and thus plant-community composition. Most studies on such plant-soil feedbacks (PSFs) have been performed under controlled greenhouse conditions, whereas no study has directly compared PSFs under greenhouse and natural field conditions. We grew three grass species that differ in local abundance in grassland communities simultaneously in the greenhouse and field on field-collected soils either previously conditioned by these species or by the general grassland community. As soils in grasslands are typically conditioned by mixes of species through the patchy and heterogeneous plant species' distributions, we additionally compared the effects of species-specific versus non-specific species conditioning on PSFs in natural and greenhouse conditions. In almost all comparisons PSFs differed between the greenhouse and field. In the greenhouse, plant growth in species-specific and non-specific soils resulted in similar effects with neutral PSFs for the most abundant species and positive PSFs for the less abundant species. In contrast, in the field all grass species tested performed best in non-specific plots, whereas species-specific PSFs were neutral for the most abundant and varied for the less abundant species. This indicates a general beneficial effect of plant diversity on PSFs in the field. Controlled greenhouse conditions might provide valuable insights on the nominal effects of soils on plants. However, the PSFs observed in greenhouse conditions may not be the determining drivers in natural plant communities where their effects may be overwhelmed by the diversity of abiotic and biotic above- and belowground interactions in the field.}, language = {en} } @article{HeinzeWernerWeberetal.2015, author = {Heinze, Johannes and Werner, Tony and Weber, Ewald and Rillig, Matthias C. and Joshi, Jasmin Radha}, title = {Soil biota effects on local abundances of three grass species along a land-use gradient}, series = {Oecologia}, volume = {179}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-015-3336-0}, pages = {249 -- 259}, year = {2015}, abstract = {Biotic plant-soil interactions and land-use intensity are known to affect plant individual fitness as well as competitiveness and therefore plant-species abundances in communities. Therefore, a link between soil biota and land-use intensity on local abundance of plant species in grasslands can be expected. In two greenhouse experiments, we investigated the effects of soil biota from grassland sites differing in land-use intensity on three grass species that vary in local abundances along this land-use gradient. We were interested in those soil-biota effects that are associated with land-use intensity, and whether these effects act directly or indirectly. Therefore, we grew the three plant species in two separate experiments as single individuals and in mixtures and compared their performance. As single plants, all three grasses showed a similar performance with and without soil biota. In contrast, in mixtures growth of the species in response to the presence or absence of soil biota differed. This resulted in different soil-biota effects that tend to correspond with patterns of species-specific abundances in the field for two of the three species tested. Our results highlight the importance of indirect interactions between plants and soil microorganisms and suggest that combined effects of soil biota and plant-plant interactions are involved in structuring plant communities. In conclusion, our experiments suggest that soil biota may have the potential to alter effects of plant-plant interactions and therefore influence plant-species abundances and diversity in grasslands.}, language = {en} } @article{HeinzeGenschWeberetal.2016, author = {Heinze, Johannes and Gensch, Sabine and Weber, Ewald and Joshi, Jasmin Radha}, title = {Soil temperature modifies effects of soil biota on plant growth}, series = {Journal of plant ecology}, volume = {10}, journal = {Journal of plant ecology}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1752-9921}, doi = {10.1093/jpe/rtw097}, pages = {808 -- 821}, year = {2016}, abstract = {Aims Plants directly and indirectly interact with many abiotic and biotic soil components. Research so far mostly focused on direct, individual abiotic or biotic effects on plant growth, but only few studies tested the indirect effects of abiotic soil factors on plant growth. Therefore, we investigated how abiotic soil conditions affect plant performance, via changes induced by soil biota. Methods In a full-factorial experiment, we grew the widespread grass Dactylis glomerata either with or without soil biota and investigated the impact of soil temperature, fertility and moisture on the soil biota effects on plant growth. We measured biomass production, root traits and colonization by arbuscular mycorrhizal fungi as well as microbial respiration. Important Findings We found significant interaction effects between abiotic soil conditions and soil biota on plant growth for fertility, but especially for soil temperature, as an increase of 10 degrees C significantly changed the soil biota effects on plant growth from positive to neutral. However, if tested individually, an increase in soil temperature and fertility per se positively affected plant biomass production, whereas soil biota per se did not affect overall plant growth, but both influenced root architecture. By affecting soil microbial activity and root architecture, soil temperature might influence both mutualistic and pathogenic interactions between plants and soil biota. Such soil temperature effects should be considered in soil feedback studies to ensure greater transferability of results from artificial and experimental conditions to natural environmental conditions.}, language = {en} }