@article{FechnerBaumannWalz2013, author = {Fechner, Lennart and Baumann, Otto and Walz, Bernd}, title = {Activation of the cyclic AMP pathway promotes serotonin-induced Ca2+ oscillations in salivary glands of the blowfly Calliphora vicina}, series = {Cell calcium}, volume = {53}, journal = {Cell calcium}, number = {2}, publisher = {Churchill Livingstone}, address = {Edinburgh}, issn = {0143-4160}, doi = {10.1016/j.ceca.2012.10.004}, pages = {94 -- 101}, year = {2013}, abstract = {Ca2+ and cAMP signalling pathways interact in a complex manner at multiple sites. This crosstalk fine-tunes the spatiotemporal patterns of Ca2+ and cAMP signals. In salivary glands of the blowfly Calliphora vicina fluid secretion is stimulated by serotonin (5-hydroxytryptamine, 5-HT) via activation of two different 5-HT receptors coupled to the InsP(3)/Ca2+ (Cv5-HT2 alpha) or the cAMP pathway (Cv5-HT7), respectively. We have shown recently in permeabilized gland cells that cAMP sensitizes InsP(3)-induced Ca2+ release to InsP(3). Here we study the effects of the CAMP signalling pathway on 5-HT-induced oscillations in transepithelial potential (TEP) and in intracellular [Ca2+]. We show: (1) Blocking the activation of the cAMP pathway by cinanserin suppresses the generation of TEP and Ca2+ oscillations, (2) application of 8-CPT-cAMP in the presence of cinanserin restores 5-HT-induced TEP and Ca2+ oscillations, (3) 8-CPT-cAMP sensitizes the InsP(3)/Ca2+ signalling pathway to 5-HT and the Cv5-HT2 alpha, receptor agonist 5-MeOT, (4) 8-CPT-cAMP induces Ca2+ oscillations in cells loaded with subthreshold concentrations of InsP(3), (5) inhibition of protein kinase A by H-89 abolishes 5-HT-induced TEP and Ca2+ spiking and mimics the effect of cinanserin. These results suggest that activation of the cyclic AMP pathway promotes the generation of 5-HT-induced Ca2+ oscillations in blowfly salivary glands.}, language = {en} } @article{VossFechnerWalzetal.2010, author = {Voss, Martin and Fechner, Lennart and Walz, Bernd and Baumann, Otto}, title = {Calcineurin activity augments cAMP/PKA-dependent activation of V-ATPase in blowfly salivary glands}, issn = {0363-6143}, doi = {10.1152/ajpcell.00328.2009}, year = {2010}, abstract = {We have examined the role of the Ca2+-dependent protein phosphatase 2B (calcineurin) in the regulation of the vacuolar H+-ATPase (V-ATPase) in blowfly salivary glands. In response to the neurohormone serotonin [5-hydroxytryptamine (5-HT)] and under the mediation of the cAMP/PKA signaling pathway, the secretory cells assemble and activate V-ATPase molecules at the apical membrane. We demonstrate that the inhibition of calcineurin activity by cyclosporin A, by FK- 506, or by prevention of the elevation of Ca2+ diminishes the 5-HT-induced assembly and activation of V-ATPase. The effect of calcineurin on V-ATPase is mediated by the cAMP/PKA signaling pathway, with calcineurin acting upstream of PKA, because 1) cyclosporin A does not influence the 8-(4-chlorophenylthio) adenosine-3',5'-cyclic monophosphate (8-CPT-cAMP)-induced activation of V-ATPase, and 2) the 5-HT-induced rise in cAMP is highly reduced in the presence of cyclosporin A. Moreover, a Ca2+ rise evoked by the sarco(endo) plasmic reticulum Ca2+-ATPase (SERCA) inhibitor cyclopiazonic acid leads to an increase in intracellular cAMP concentration and a calcineurin-mediated PKA- dependent activation of V-ATPase. We propose that calcineurin activity mediates cross talk between the inositol 1,4,5- trisphosphate/Ca2+ and the cAMP/PKA signaling pathways, thereby augmenting the 5-HT-induced rise in cAMP and thus the cAMP/PKA-mediated activation of V-ATPase.}, language = {en} }