@article{CaoTianTelfordetal.2017, author = {Cao, Xianyong and Tian, Fang and Telford, Richard J. and Ni, Jian and Xu, Qinghai and Chen, Fahu and Liu, Xingqi and Stebich, Martina and Zhao, Yan and Herzschuh, Ulrike}, title = {Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {178}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.10.030}, pages = {37 -- 53}, year = {2017}, abstract = {Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (P-ann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7 degrees N, 100.5 degrees E; north-east Tibetan Plateau), Gonghai Lake (38.9 degrees N, 112.2 degrees E; north China) and Sihailongwan Lake (42.3 degrees N, 126.6 degrees E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to radii between ca. 1000 and 1500 km because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{JiaAnslanChenetal.2022, author = {Jia, Weihan and Anslan, Sten and Chen, Fahu and Cao, Xianyong and Dong, Hailiang and Dulias, Katharina and Gu, Zhengquan and Heinecke, Liv and Jiang, Hongchen and Kruse, Stefan and Kang, Wengang and Li, Kai and Liu, Sisi and Liu, Xingqi and Liu, Ying and Ni, Jian and Schwalb, Antje and Stoof-Leichsenring, Kathleen R. and Shen, Wei and Tian, Fang and Wang, Jing and Wang, Yongbo and Wang, Yucheng and Xu, Hai and Yang, Xiaoyan and Zhang, Dongju and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {293}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107703}, pages = {14}, year = {2022}, abstract = {Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era.}, language = {en} } @article{ZhangCaoXuetal.2022, author = {Zhang, Naimeng and Cao, Xianyong and Xu, Qinghai and Huang, Xiaozhong and Herzschuh, Ulrike and Shen, Zhongwei and Peng, Wei and Liu, Sisi and Wu, Duo and Wang, Jian and Xia, Huan and Zhang, Dongju and Chen, Fahu}, title = {Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation}, series = {Catena}, volume = {210}, journal = {Catena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2021.105892}, pages = {14}, year = {2022}, abstract = {The nature of the interaction between prehistoric humans and their environment, especially the vegetation, has long been of interest. The Qinghai Lake Basin in North China is well-suited to exploring the interactions between prehistoric humans and vegetation in the Tibetan Plateau, because of the comparatively dense distribution of archaeological sites and the ecologically fragile environment. Previous pollen studies of Qinghai Lake have enabled a detailed reconstruction of the regional vegetation, but they have provided relatively little information on vegetation change within the Qinghai Lake watershed. To address the issue we conducted a pollen-based vegetation reconstruction for an archaeological site (YWY), located on the southern shore of Qinghai Lake. We used high temporal-resolution pollen records from the YWY site and from Qinghai Lake, spanning the interval since the last deglaciation (15.3 kyr BP to the present) to quantitatively reconstruct changes in the local and regional vegetation using Landscape Reconstruction Algorithm models. The results show that, since the late glacial, spruce forest grew at high altitudes in the surrounding mountains, while the lakeshore environment was occupied mainly by shrub-steppe. From the lateglacial to the middle Holocene, coniferous woodland began to expand downslope and reached the YWY site at 7.1 kyr BP. The living environment of the local small groups of Paleolithic-Epipaleolithic humans (during 15.3-13.1 kyr BP and 9-6.4 kyr BP) changed from shrub-steppe to coniferous forest-steppe. The pollen record shows no evidence of pronounced changes in the vegetation community corresponding to human activity. However, based on a comparison of the local and regional vegetation reconstructions, low values of biodiversity and a significant increase in two indicators of vegetation degradation, Chenopodiaceae and Rosaceae, suggest that prehistoric hunters-gatherers likely disturbed the local vegetation during 9.0-6.4 kyr BP. Our findings are a preliminary attempt to study human-environment interactions at Paleolithic-Epipaleolithic sites in the region, and they contribute to ongoing environmental archaeology research in the Tibetan Plateau.}, language = {en} }