@article{McCarthyStoyanovRychkovetal.2012, author = {McCarthy, Denis N. and Stoyanov, Hristiyan and Rychkov, Dmitry and Ragusch, Huelya and Melzer, Michael and Kofod, Guggi}, title = {Increased permittivity nanocomposite dielectrics by controlled interfacial interactions}, series = {Composites science and technology}, volume = {72}, journal = {Composites science and technology}, number = {6}, publisher = {Elsevier}, address = {Oxford}, issn = {0266-3538}, doi = {10.1016/j.compscitech.2012.01.026}, pages = {731 -- 736}, year = {2012}, abstract = {The use of nanoparticles in polymer composite dielectrics has promised great improvements, but useful results have been elusive. Here, the importance of the interfacial interactions between the nanoparticles and the polymer matrix are investigated in TiO2 nanocomposites for dielectric materials using surface functionalisation. The interface is observed to dominate the nanocomposite properties and leads to a threefold increase in permittivity at volume fractions as low as 10\%. Surface functionalisation of the filler nanoparticles with silanes allows control of this interface, avoiding significant degradation of the other important material properties, particularly electrical breakdown strength, and resulting in a material that is demonstrated successfully as an active material in a dielectric elastomer actuator application with increased work output compared to the pure polymer. Although further permittivity increases are observed when the interface regions have formed a percolation network, the other material properties deteriorate. The observation of percolation behaviour allows the interface thickness to be estimated.}, language = {en} } @article{VukicevicVukovicStoyanovetal.2012, author = {Vukicevic, Radovan and Vukovic, Ivana and Stoyanov, Hristiyan and Korwitz, Andreas and Pospiech, Doris and Kofod, Guggi and Loos, Katja and ten Brinke, Gerrit and Beuermann, Sabine}, title = {Poly(vinylidene fluoride)-functionalized single-walled carbon nanotubes for the preparation of composites with improved conductivity}, series = {Polymer Chemistry}, volume = {3}, journal = {Polymer Chemistry}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c2py20166f}, pages = {2261 -- 2265}, year = {2012}, abstract = {The surface of single-walled carbon nanotubes (SWCNTs) was functionalized with azide-terminated poly(vinylidene fluoride) (PVDF). Functionalization was confirmed by dispersibility, Raman spectroscopy, and thermogravimetric analyses. Raman spectra show disordering of the SWCNTs, thus, strongly suggesting that PVDF was covalently attached to SWCNTs. Functionalized SWCNTs were mixed with commercially available PVDF in a twin-screw extruder and thin films were obtained by melt-pressing. Films containing 0.5 and 1 wt\% PVDF-functionalized SWCNTs exhibited significantly improved electrical conductivity compared to PVDF films containing pristine SWCNTs.}, language = {en} }