@article{BallatoStockliGhassemietal.2013, author = {Ballato, Paolo and Stockli, Daniel F. and Ghassemi, Mohammad R. and Landgraf, Angela and Strecker, Manfred and Hassanzadeh, Jamshid and Friedrich, Anke M. and Tabatabaei, Saeid H.}, title = {Accommodation of transpressional strain in the Arabia-Eurasia collision zone new constraints from (U-Th)/He thermochronology in the Alborz mountains, north Iran}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2012TC003159}, pages = {1 -- 18}, year = {2013}, abstract = {The Alborz range of N Iran provides key information on the spatiotemporal evolution and characteristics of the Arabia-Eurasia continental collision zone. The southwestern Alborz range constitutes a transpressional duplex, which accommodates oblique shortening between Central Iran and the South Caspian Basin. The duplex comprises NW-striking frontal ramps that are kinematically linked to inherited E-W-striking, right-stepping lateral to obliquely oriented ramps. New zircon and apatite (U-Th)/He data provide a high-resolution framework to unravel the evolution of collisional tectonics in this region. Our data record two pulses of fast cooling associated with SW-directed thrusting across the frontal ramps at similar to 18-14 and 9.5-7.5 Ma, resulting in the tectonic repetition of a fossil zircon partial retention zone and a cooling pattern with a half U-shaped geometry. Uniform cooling ages of similar to 7-6 Ma along the southernmost E-W striking oblique ramp and across its associated NW-striking frontal ramps suggests that the ramp was reactivated as a master throughgoing, N-dipping thrust. We interpret this major change in fault kinematics and deformation style to be related to a change in the shortening direction from NE to N/NNE. The reduction in the obliquity of thrusting may indicate the termination of strike-slip faulting (and possibly thrusting) across the Iranian Plateau, which could have been triggered by an increase in elevation. Furthermore, we suggest that similar to 7-6-m.y.-old S-directed thrusting predated inception of the westward motion of the South Caspian Basin. Citation: Ballato, P., D. F. Stockli, M. R. Ghassemi, A. Landgraf, M. R. Strecker, J. Hassanzadeh, A. Friedrich, and S. H. Tabatabaei (2012), Accommodation of transpressional strain in the Arabia-Eurasia collision zone: new constraints from (U-Th)/He thermochronology in the Alborz mountains.}, language = {en} } @article{BallatoUbaLandgrafetal.2011, author = {Ballato, Paolo and Uba, Cornelius Eji and Landgraf, Angela and Strecker, Manfred and Sudo, Masafumi and Stockli, Daniel F. and Friedrich, Anke M. and Tabatabaei, Saeid H.}, title = {Arabia-Eurasia continental collision insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran}, series = {Geological Society of America bulletin}, volume = {123}, journal = {Geological Society of America bulletin}, number = {1-2}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B30091.1}, pages = {106 -- 131}, year = {2011}, abstract = {A poorly understood lag time of 15-20 m.y. exists between the initial Arabia-Eurasia continental collision in late Eocene to early Oligocene time and the acceleration of tectonic and sedimentary processes across the collision zone in the early to late Miocene. The late Eocene to Miocene-Pliocene clastic and shallow-marine sedimentary rocks of the Kond, Eyvanekey, and Semnan Basins in the Alborz Mountains (northern Iran) offer the possibility to track the evolution of this orogen in the framework of collision processes. A transition from volcaniclastic submarine deposits to shallow-marine evaporites and terrestrial sediments occurred shortly after 36 Ma in association with reversals in sediment provenance, strata tilting, and erosional unroofing. These events followed the termination of subduction arc magmatism and marked a changeover from an extensional to a contractional regime in response to initiation of continental collision with the subduction of stretched Arabian lithosphere. This early stage of collision produced topographic relief associated with shallow foreland basins, suggesting that shortening and tectonic loading occurred at low rates. Starting from the early Miocene (17.5 Ma), flexural subsidence in response to foreland basin initiation occurred. Fast sediment accumulation rates and erosional unroofing trends point to acceleration of shortening by the early Miocene. We suggest that the lag time between the initiation of continental collision (36 Ma) and the acceleration of regional deformation (20-17.5 Ma) reflects a two-stage collision process, involving the "soft" collision of stretched lithosphere at first and "hard" collision following the arrival of unstretched Arabian continental litho sphere in the subduction zone.}, language = {en} } @article{BallatoStrecker2014, author = {Ballato, Paolo and Strecker, Manfred}, title = {Assessing tectonic and climatic causal mechanisms in foreland-basin stratal architecture: insights from the Alborz Mountains, northern Iran}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {39}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.3480}, pages = {110 -- 125}, year = {2014}, abstract = {The southern foreland basin of the Alborz Mountains of northern Iran is characterized by an approximately 7.3-km-thick sequence of Miocene sedimentary rocks, constituting three basin-wde coarsening-upward units spanning a period of 10(6)years. We assess available magnetostratigraphy, paleoclimatic reconstructions, stratal architecture, records of depositional environments, and sediment-provenance data to characterize the relationships between tectonically-generated accommodation space (A) and sediment supply (S). Our analysis allows an inversion of the stratigraphy for particular forcing mechanisms, documenting causal relationships, and providing a basis to decipher the relative contributions of tectonics and climate (inferred changes in precipitation) in controlling sediment supply to the foreland basin. Specifically, A/S>1, typical of each basal unit (17.5-16.0, 13.8-13.1 and 10.3-9.6Ma), is associated with sharp facies retrogradation and reflects substantial tectonic subsidence. Within these time intervals, arid climatic conditions, changes in sediment provenance, and accelerated exhumation in the orogen suggest that sediment supply was most likely driven by high uplift rates. Conversely, A/S<1 (13.8 and 13.8-11Ma, units 1, and 2) reflects facies progradation during a sharp decline in tectonic subsidence caused by localized intra-basinal uplift. During these time intervals, climate continued to be arid and exhumation active, suggesting that sediment supply was again controlled by tectonics. A/S<1, at 11-10.3Ma and 9-6-7.6Ma (and possibly 6.2; top of units 2 and 3), is also associated with two episodes of extensive progradation, but during wetter phases. The first episode appears to have been linked to a pulse in sediment supply driven by an increase in precipitation. The second episode reflects a balance between a climatically-induced increase in sediment supply and a reduction of subsidence through the incorporation of the proximal foreland into the orogenic wedge. This in turn caused an expansion of the catchment and a consequent further increase in sediment supply.}, language = {en} } @article{YildirimMelnickBallatoetal.2013, author = {Yildirim, Cengiz and Melnick, Daniel and Ballato, Paolo and Schildgen, Taylor F. and Echtler, Helmut Peter and Erginal, A. Evren and Kiyak, Nafiye Gunec and Strecker, Manfred}, title = {Differential uplift along the northern margin of the Central Anatolian Plateau - inferences from marine terraces}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {81}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2013.09.011}, pages = {12 -- 28}, year = {2013}, abstract = {Emerged marine terraces and paleoshorelines along plate margins are prominent geomorphic markers that can be used to quantify the rates and patterns of crustal deformation. The northern margin of the Central Anatolian Plateau has been interpreted as an actively deforming orogenic wedge between the North Anatolian Fault and the Black Sea. Here we use uplifted marine terraces across principal faults on the Sinop Peninsula at the central northern side of the Pontide orogenic wedge to unravel patterns of Quaternary faulting and orogenic wedge behavior. We leveled the present-day elevations of paleoshorelines and dated marine terrace deposits using optically stimulated luminescence (OSL) to determine coastal uplift. The elevations of the paleoshorelines vary between 4 +/- 0.2 and 67 +/- 1.4 m above sea level and OSL ages suggest terrace formation episodes during interglacial periods at ca 125, 190, 400 and 570 ka, corresponding to marine isotopic stages (MIS) 5e, 7a, 11 and 15. Mean apparent vertical displacement rates (without eustatic correction) deduced from these terraces range between 0.02 and 0.18 mm/a, with intermittent faster rates of up to 0.26 mm/a. We obtained higher rates at the eastern and southern parts of the peninsula, toward the hinterland, indicating non-uniform uplift across the different morphotectonic segments of the peninsula. Our data are consistent with active on- and offshore faulting across the Sinop Peninsula. When integrated with regional tectonic observations, the faulting pattern reflects shortening distributed over a broad region of the northern margin of the Central Anatolian Plateau during the Quaternary.}, language = {en} } @article{LandgrafZielkeArrowsmithetal.2013, author = {Landgraf, Angela and Zielke, Olaf and Arrowsmith, J. Ram{\´o}n and Ballato, Paolo and Strecker, Manfred and Schildgen, Taylor F. and Friedrich, Anke M. and Tabatabaei, Sayyed-Hassan}, title = {Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran}, series = {Journal of geophysical research : Earth surface}, volume = {118}, journal = {Journal of geophysical research : Earth surface}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/jgrf.20109}, pages = {1792 -- 1805}, year = {2013}, abstract = {The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a simple to a composite state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.}, language = {en} } @misc{DonnerStreckerRoessleretal.2009, author = {Donner, Stefanie and Strecker, Manfred and R{\"o}ßler, Dirk and Ghods, Abdolreza and Kr{\"u}ger, Frank and Landgraf, Angela and Ballato, Paolo}, title = {Earthquake source models for earthquakes in Northern Iran}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32581}, year = {2009}, abstract = {The complex system of strike-slip and thrust faults in the Alborz Mountains, Northern Iran, are not well understood yet. Mainly structural and geomorphic data are available so far. As a more extensive base for seismotectonic studies and seismic hazard analysis we plan to do a comprehensive seismic moment tensor study also from smaller magnitudes (M < 4.5) by developing a new algorithm. Here, we present first preliminary results.}, language = {en} } @misc{DonnerRoesslerStreckeretal.2009, author = {Donner, Stefanie and R{\"o}ßler, Dirk and Strecker, Manfred and Landgraf, Angela and Ballato, Paolo}, title = {Erweiterte Momententensorinversion und ihre seismotektonische Anwendung : Elbursgebirge, Nordiran}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29308}, year = {2009}, abstract = {Der Elburs im Norden Irans ist ein durch die Konvergenz der Arabischen und Eurasischen Platte verursachtes doppelt konvergentes Gebirge. Das komplexe System von Blattverschiebungen und {\"U}berschiebungen sowie die Aufnahme der Deformation im Elburs ist noch nicht sehr gut verstanden. Eine neu zu entwicklende Methode zur Inversion von seismischen Momententensoren, die unterschiedliche Beobachtungen verschiedener Stationstypen kombiniert invertiert, soll die bisher haupts{\"a}chlich strukturelle/geomorphologische Datengrundlage um Momententensoren auch kleinerer Magnituden (M < 4.5) erweitern. Dies ist die notwendige Grundlage f{\"u}r detaillierte seismotektonische Studien, die wiederum die Basis f{\"u}r seismische Gef{\"a}hrdungsanalysen bilden.}, language = {de} } @article{LandgrafBallatoStreckeretal.2009, author = {Landgraf, Angela and Ballato, Paolo and Strecker, Manfred and Friedrich, Anke M. and Tabatabaei, Saeid H. and Shahpasandzadeh, Majid}, title = {Fault-kinematic and geomorphic observations along the North Tehran Thrust and Mosha Fasham Fault, Alborz mountains Iran : implications for fault-system evolution and interaction in a changing tectonic regime}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2009.04089.x}, year = {2009}, abstract = {Neighbouring faults can interact, potentially link up and grow, and consequently increase the seismic and related natural hazards in their vicinity. Despite evidence of Quaternary faulting, the kinematic relationships between the neighbouring Mosha Fasham Fault (MFF) and the North Tehran Thrust (NTT) and their temporal evolution in the Alborz mountains are not well understood. The ENE-striking NTT is a frontal thrust that delimits the Alborz mountains to the south with a 2000 m topographic front with respect to the proximal Tehran plain. However, no large instrumentally recorded earthquakes have been attributed to that fault. In contrast, the sigmoidally shaped MFF is a major strike-slip fault, located within the Alborz Mountains. Sinistral motion along the eastern part of the MFF is corroborated by microseismicity and fault kinematic analysis, which documents recent transtensional deformation associated with NNE-SSW oriented shortening. To better understand the activity of these faults on different timescales, we combined fault- kinematic analysis and geomorphic observations, to infer the kinematic history of these structures. Our fault kinematic study reveals an early dextral shear for the NTT and the central MFF, responsible for dextral strike-slip and oblique reverse faulting during NW-oriented shortening. This deformation regime was superseded by NE-oriented shortening, associated with sinistral-oblique thrusting along the NTT and the central-western MFF, sinistral strike-slip motion along subsidiary faults in the central MFF segment, and folding and tilting of Eocene to Miocene units in the MFF footwall. Continued thrusting along the NTT took place during the Quaternary. However, folding in the hanging wall and sinistral stream-offsets indicate a left-oblique component and Quaternary strike-slip reactivation of the eastern NTT- segment, close to its termination. This complex history of faulting under different stress directions has resulted in a composite landscape with inherited topographic signatures. Our study shows that the topography of the hanging wall of the NTT reflects a segmentation into sectors with semi-independent uplift histories. Areas of high topographic residuals and apparent high uplift underscore the fault kinematics. Combined, our data suggest an early mechanical linkage of the NTT and MFF fault systems during a former dextral transpressional stage, caused by NW-compression. During NE-oriented shortening, the NTT and MFF were reactivated and incorporated into a nascent transpressional duplex. The youngest manifestation of motion in this system is sinistral transtension. However, this deformation is not observed everywhere and has not yet resulted in topographic inversion.}, language = {en} } @article{GhassemiFattahiLandgrafetal.2014, author = {Ghassemi, Mohammad R. and Fattahi, Morteza and Landgraf, Angela and Ahmadi, Mehdi and Ballato, Paolo and Tabatabaei, Saeid H.}, title = {Kinematic links between the Eastern Mosha Fault and the North Tehran Fault, Alborz range, northern Iran}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {622}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2014.03.007}, pages = {81 -- 95}, year = {2014}, abstract = {Kinematic interaction of faults is an important issue for detailed seismic hazard assessments in seismically active regions. The Eastern Mosha Fault (EMF) and the North Tehran Fault (NTF) are two major active faults of the southern central Alborz mountains, located in proximity of Tehran (population similar to 9 million). We used field, geomorphological and paleoseismological data to explore the kinematic transition between the faults, and compare their short-term and long-term history of activity. We introduce the Niknamdeh segment of the NTF along which the strike-slip kinematics of EMF is transferred onto the NTF, and which is also responsible for the development of a pull-apart basin between the eastern segments of the NTF. The Ira trench site at the linkage zone between the two faults reveals the history of interaction between rock avalanches, active faulting and sag-pond development. The kinematic continuity between the EMF and NTF requires updating of seismic hazard models for the NTF, the most active fault adjacent to the Tehran Metropolis. Study of offsets of large-scale morphological features along the EMF, and comparison with estimated slip rates along the fault indicates that the EMF has started its left-lateral kinematics between 3.2 and 4.7 Ma. According to our paleoseismological data and the morphology of the nearby EMF and NTF, we suggest minimum and maximum values of about 1.8 and 3.0 mm/year for the left-lateral kinematics on the two faults in their linkage zone, averaged over Holocene time scales. Our study provides a partial interpretation, based on available data, for the fault activity in northeastern Tehran region, which may be completed with studies of other active faults of the region to evaluate a more realistic seismic hazard analysis for this heavily populated major city. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{HeidarzadehBallatoHassanzadehetal.2017, author = {Heidarzadeh, Ghasem and Ballato, Paolo and Hassanzadeh, Jamshid and Ghassemi, Mohammad R. and Strecker, Manfred}, title = {Lake overspill and onset of fluvial incision in the Iranian Plateau: Insights from the Mianeh Basin}, series = {Earth \& planetary science letters}, volume = {469}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.04.019}, pages = {135 -- 147}, year = {2017}, abstract = {Orogenic plateaus represent a prime example of the interplay between surface processes, climate, and tectonics. This kind of an interplay is thought to be responsible for the formation, preservation, and, ultimately, the destruction of a typical elevated, low-internal relief plateau landscape. Here, we document the timing of intermontane basin filling associated with the formation of a low-relief plateau morphology, followed by basin opening and plateau-flank incision in the northwestern Iranian Plateau of the Arabia Eurasia collision zone. Our new U-Pb zircon ages from intercalated volcanic ashes in exposed plateau basin-fill sediments from the most external plateau basin (Mianeh Basin) document that the basin was internally drained at least between similar to 7 and 4 Ma, and that from similar to 5 to 4 Ma it was characterized by an similar to 2-km-high and similar to 0.5-km-deep lake (Mianeh paleolake), most likely as a result of wetter climatic conditions. At the same time, the eastern margin of the Mianeh Basin (and, therefore, of the Iranian Plateau) experienced limited tectonic activity, as documented by onlapping sediments and smoothed topography. The combination of high lake level and subdued topography at the plateau margin led to lake overspill, which resulted in the cutting of an similar to 1-km-deep bedrock gorge (Amardos) by the Qezel-Owzan River (QOR) beginning at similar to 4 Ma. This was associated with the incision of the plateau landscape and the establishment of fluvial connectivity with the Caspian Sea. Overall, our study emphasizes the interplay between surface and tectonic processes in forming, maintaining, and destroying orogenic plateau morphology, the transitional nature of orogenic plateau landscapes on timescales of 10(6) yr, and, finally, the role played by overspilling in integrating endorheic basins. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} }