@article{WeberAbuAyyashAbueladasetal.2004, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Al-Amoush, H. and Babeyko, Andrey and Bartov, Yosef and Baumann, M. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bribach, Jens and El-Kelani, R. and Forster, A. and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, U. and Garfunkel, Zvi and Grunewald, Steffen and Gotze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, S. and Hofstetter, Alfons and Jackel, K. H. and Kesten, Dagmar and Kind, Rainer and Maercklin, Nils and Mechie, James and Mohsen, Amjad and Neubauer, F. M. and Oberh{\"a}nsli, Roland and Qabbani, I. and Ritter, O. and Rumpker, G. and Rybakov, M. and Ryberg, Trond and Scherbaum, Frank and Schmidt, J. and Schulze, A. and Sobolev, Stephan Vladimir and Stiller, M. and Th,}, title = {The crustal structure of the Dead Sea Transform}, year = {2004}, abstract = {To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries}, language = {en} } @article{TobieTeanbyCoustenisetal.2014, author = {Tobie, G. and Teanby, N. A. and Coustenis, A. and Jaumann, Ralf and Raulin, E. and Schmidt, J. and Carrasco, N. and Coates, Andrew J. and Cordier, D. and De Kok, R. and Geppert, W. D. and Lebreton, J. -P. and Lefevre, A. and Livengood, T. A. and Mandt, K. E. and Mitri, G. and Nimmo, F. and Nixon, C. A. and Norman, L. and Pappalardo, R. T. and Postberg, F. and Rodriguez, S. and SchuizeMakuch, D. and Soderblom, J. M. and Solomonidou, A. and Stephan, K. and Stofan, E. R. and Turtle, E. P. and Wagner, R. J. and West, R. A. and Westlake, J. H.}, title = {Science goals and mission concept for the future exploration of Titan and Enceladus}, series = {Planetary and space science}, volume = {104}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2014.10.002}, pages = {59 -- 77}, year = {2014}, language = {en} } @article{SramaKruegerYamaguchietal.2012, author = {Srama, Ralf and Krueger, H. and Yamaguchi, T. and Stephan, T. and Burchell, M. and Kearsley, A. T. and Sterken, V. and Postberg, F. and Kempf, S. and Gr{\"u}n, Eberhard and Altobelli, Nicolas and Ehrenfreund, P. and Dikarev, V. and Horanyi, M. and Sternovsky, Zoltan and Carpenter, J. D. and Westphal, A. and Gainsforth, Z. and Krabbe, A. and Agarwal, Jessica and Yano, H. and Blum, J. and Henkel, H. and Hillier, J. and Hoppe, P. and Trieloff, M. and Hsu, S. and Mocker, A. and Fiege, K. and Green, S. F. and Bischoff, A. and Esposito, F. and Laufer, R. and Hyde, T. W. and Herdrich, G. and Fasoulas, S. and Jaeckel, A. and Jones, G. and Jenniskens, P. and Khalisi, E. and Moragas-Klostermeyer, Georg and Spahn, Frank and Keller, H. U. and Frisch, P. and Levasseur-Regourd, A. C. and Pailer, N. and Altwegg, K. and Engrand, C. and Auer, S. and Silen, J. and Sasaki, S. and Kobayashi, M. and Schmidt, J. and Kissel, J. and Marty, B. and Michel, P. and Palumbo, P. and Vaisberg, O. and Baggaley, J. and Rotundi, A. and Roeser, H. P.}, title = {SARIM PLUS-sample return of comet 67P/CG and of interstellar matter}, series = {EXPERIMENTAL ASTRONOMY}, volume = {33}, journal = {EXPERIMENTAL ASTRONOMY}, number = {2-3}, publisher = {SPRINGER}, address = {DORDRECHT}, issn = {0922-6435}, doi = {10.1007/s10686-011-9285-7}, pages = {723 -- 751}, year = {2012}, abstract = {The Stardust mission returned cometary, interplanetary and (probably) interstellar dust in 2006 to Earth that have been analysed in Earth laboratories worldwide. Results of this mission have changed our view and knowledge on the early solar nebula. The Rosetta mission is on its way to land on comet 67P/Churyumov-Gerasimenko and will investigate for the first time in great detail the comet nucleus and its environment starting in 2014. Additional astronomy and planetary space missions will further contribute to our understanding of dust generation, evolution and destruction in interstellar and interplanetary space and provide constraints on solar system formation and processes that led to the origin of life on Earth. One of these missions, SARIM-PLUS, will provide a unique perspective by measuring interplanetary and interstellar dust with high accuracy and sensitivity in our inner solar system between 1 and 2 AU. SARIM-PLUS employs latest in-situ techniques for a full characterisation of individual micrometeoroids (flux, mass, charge, trajectory, composition()) and collects and returns these samples to Earth for a detailed analysis. The opportunity to visit again the target comet of the Rosetta mission 67P/Churyumov-Gerasimeenternko, and to investigate its dusty environment six years after Rosetta with complementary methods is unique and strongly enhances and supports the scientific exploration of this target and the entire Rosetta mission. Launch opportunities are in 2020 with a backup window starting early 2026. The comet encounter occurs in September 2021 and the reentry takes place in early 2024. An encounter speed of 6 km/s ensures comparable results to the Stardust mission.}, language = {en} } @article{SendAbboudHartmannetal.2013, author = {Send, Sebastian and Abboud, Ali and Hartmann, Robert and Huth, M. and Leitenberger, Wolfram and Pashniak, N. and Schmidt, J. and Str{\"u}der, Lothar and Pietsch, Ullrich}, title = {Characterization of a pnCCD for applications with synchrotron radiation}, series = {Nuclear instruments \& methods in physics research : a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics ; A, Accelerators, spectrometers, detectors and associated equipment}, volume = {711}, journal = {Nuclear instruments \& methods in physics research : a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics ; A, Accelerators, spectrometers, detectors and associated equipment}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-9002}, doi = {10.1016/j.nima.2013.01.044}, pages = {132 -- 142}, year = {2013}, abstract = {In this work we study the response of a pnCCD by means of X-ray spectroscopy in the energy range between 6 key and 20 key and by Laue diffraction techniques. The analyses include measurements of characteristic detector parameters like energy resolution, count rate capability and effects of different gain settings. The limit of a single photon counting operation in white beam X-ray diffraction experiments is discussed with regard to the occurrence of pile-up events, for which the energy information about individual photons is lost. In case of monochromatic illumination the pnCCD can be used as a fast conventional CCD with a charge handling capacity (CHC) of about 300,000 electrons per pixel. If the CHC is exceeded, any surplus charge will spill to neighboring pixels perpendicular to the transfer direction due to electrostatic repulsion. The possibilities of increasing the number of storable electrons are investigated for different voltage settings by exposing a single pixel with X-rays generated by a microfocus X-ray source. The pixel binning mode is tested as an alternative approach that enables a pnCCD operation with significantly shorter readout times.}, language = {en} } @article{QinHeilSchmidtetal.2019, author = {Qin, Qing and Heil, T. and Schmidt, J. and Schmallegger, Max and Gescheidt, Georg and Antonietti, Markus and Oschatz, Martin}, title = {Electrochemical Fixation of Nitrogen and Its Coupling with Biomass Valorization with a Strongly Adsorbing and Defect Optimized Boron-Carbon-Nitrogen Catalyst}, series = {ACS Applied Energy Materials}, volume = {2}, journal = {ACS Applied Energy Materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0962}, doi = {10.1021/acsaem.9b01852}, pages = {8359 -- 8365}, year = {2019}, abstract = {The electrochemical conversion of low-cost precursors into high-value chemicals using renewably generated electricity is a promising approach to build up an environmentally friendly energy cycle, including a storage element. The large-scale implementation of such process can, however, only be realized by the design of cost-effective electrocatalysts with high efficiency and highest stability. Here, we report the synthesis of N and B codoped porous carbons. The constructed B-N motives combine abundant unpaired electrons and frustrated Lewis pairs (FLPs). They result in desirable performance for electrochemical N-2 reduction reaction (NRR) and electrooxidation of 5-hydroxymethylfurfural (HMF) in the absence of any metal cocatalyst. A maximum Faradaic efficiency of 15.2\% with a stable NH3 production rate of 21.3 mu g h(-1) mg(-1) is obtained in NRR. Besides, 2,5-furandicarboxylic acid (FDCA) is first obtained by using non-metalbased electrocatalysts at a conversion of 71\% and with yield of 57\%. Gas adsorption experiments elucidate the relationship between the structure and the ability of the catalysts to activate the substrate molecules. This work opens up deep insights for the rational design of non-metal-based catalysts for potential electrocatalytic applications and the possible enhancement of their activity by the introduction of FLPs and point defects at grain boundaries.}, language = {en} } @article{PostbergSchmidtHillieretal.2011, author = {Postberg, Frank and Schmidt, J. and Hillier, J. and Kempf, Sascha and Srama, Ralf}, title = {A salt-water reservoir as the source of a compositionally stratified plume on Enceladus}, series = {Nature : the international weekly journal of science}, volume = {474}, journal = {Nature : the international weekly journal of science}, number = {7353}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature10175}, pages = {620 -- 622}, year = {2011}, abstract = {The discovery of a plume of water vapour and ice particles emerging from warm fractures ('tiger stripes') in Saturn's small, icy moon Enceladus(1-6) raised the question of whether the plume emerges from a subsurface liquid source(6-8) or from the decomposition of ice(9-12). Previous compositional analyses of particles injected by the plume into Saturn's diffuse E ring have already indicated the presence of liquid water(8), but the mechanisms driving the plume emission are still debated(13). Here we report an analysis of the composition of freshly ejected particles close to the sources. Salt-rich ice particles are found to dominate the total mass flux of ejected solids (more than 99 per cent) but they are depleted in the population escaping into Saturn's E ring. Ice grains containing organic compounds are found to be more abundant in dense parts of the plume. Whereas previous Cassini observations were compatible with a variety of plume formation mechanisms, these data eliminate or severely constrain non-liquid models and strongly imply that a salt-water reservoir with a large evaporating surface(7,8) provides nearly all of the matter in the plume.}, language = {en} } @article{DzhanoevSchmidtLiuetal.2016, author = {Dzhanoev, Arsen R. and Schmidt, J. and Liu, X. and Spahn, Frank}, title = {Charging of small grains in a space plasma: Application to Jovian stream particles}, series = {International psychogeriatrics}, volume = {591}, journal = {International psychogeriatrics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527891}, pages = {647 -- 684}, year = {2016}, abstract = {Context. Most theoretical investigations of dust charging processes in space have treated the current balance condition as independent of grain size. However, for small grains, since they are often observed in space environments, a dependence on grain size is expected owing to secondary electron emission (SEE). Here, by the term "small" we mean a particle size comparable to the typical penetration depth for given primary electron energy. The results are relevant for the dynamics of small, charged dust particles emitted by the volcanic moon Io, which forms the Jovian dust streams. Aims. We revise the theory of charging of small (submicron sized) micrometeoroids to take into account a high production of secondary electrons for small grains immersed in an isotropic flux of electrons. We apply our model to obtain an improved estimate for the charge of the dust streams leaving the Jovian system, detected by several spacecraft. Methods. We apply a continuum model to describe the penetration of primary electrons in a grain and the emission of secondary electrons along the path. Averaging over an isotropic flux of primaries, we derive a new expression for the secondary electron yield, which can be used to express the secondary electron current on a grain. Results. For the Jupiter plasma environment we derive the surface potential of grains composed of NaCl (believed to be the major constituent of Jovian dust stream particles) or silicates. For small particles, the potential depends on grain size and the secondary electron current induces a sensitivity to material properties. As a result of the small particle effect, the estimates for the charging times and for the fractional charge fluctuations of NaCl grains obtained using our general approach to SEE give results qualitatively different from the analogous estimates derived from the traditional approach to SEE. We find that for the charging environment considered in this paper field emission does not limit the charging of NaCl grains.}, language = {en} } @article{AldorettaStLouisRichardsonetal.2016, author = {Aldoretta, E. J. and St-Louis, N. and Richardson, N. D. and Moffat, Anthony F. J. and Eversberg, T. and Hill, G. M. and Shenar, Tomer and Artigau, E. and Gauza, B. and Knapen, J. H. and Kubat, Jiř{\´i} and Kubatova, Brankica and Maltais-Tariant, R. and Munoz, M. and Pablo, H. and Ramiaramanantsoa, T. and Richard-Laferriere, A. and Sablowski, D. P. and Simon-Diaz, S. and St-Jean, L. and Bolduan, F. and Dias, F. M. and Dubreuil, P. and Fuchs, D. and Garrel, T. and Grutzeck, G. and Hunger, T. and Kuesters, D. and Langenbrink, M. and Leadbeater, R. and Li, D. and Lopez, A. and Mauclaire, B. and Moldenhawer, T. and Potter, M. and dos Santos, E. M. and Schanne, L. and Schmidt, J. and Sieske, H. and Strachan, J. and Stinner, E. and Stinner, P. and Stober, B. and Strandbaek, K. and Syder, T. and Verilhac, D. and Waldschlaeger, U. and Weiss, D. and Wendt, A.}, title = {An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134}, series = {Monthly notices of the Royal Astronomical Society}, volume = {460}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1188}, pages = {3407 -- 3417}, year = {2016}, abstract = {During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He ii lambda 5411 emission line, the previously identified period was refined to P = 2.255 +/- 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 +/- 6 d, or similar to 18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Delta I center dot a parts per thousand integral 90A degrees was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C iv lambda lambda 5802,5812 and He i lambda 5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He i lambda 5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist.}, language = {en} }