@article{WeithoffMoserKamjunkeetal.2010, author = {Weithoff, Guntram and Moser, Michael and Kamjunke, Norbert and Gaedke, Ursula and Weisse, Thomas}, title = {Lake morphometry and wind exposure may shape the plankton community structure in acidic mining lakes}, issn = {0075-9511}, doi = {10.1016/j.limno.2009.11.002}, year = {2010}, abstract = {Acidic mining lakes (pH <3) are specific habitats exhibiting particular chemical and biological characteristics. The species richness is low and mixotrophy and omnivory are common features of the plankton food web in such lakes. The plankton community structure of mining lakes of different morphometry and mixing type but similar chemical characteristics (Lake 130, Germany and Lake Langau, Austria) was investigated. The focus was laid on the species composition, the trophic relationship between the phago-mixotrophic flagellate Ochromonas sp. and bacteria and the formation of a deep chlorophyll maximum along a vertical pH-gradient. The shallow wind-exposed Lake 130 exhibited a higher species richness than Lake Langau. This increase in species richness was made up mainly by mero-planktic species, suggesting a strong benthic/littoral - pelagic coupling. Based on the field data from both lakes, a nonlinear, negative relation between bacteria and Ochromonas biomass was found, suggesting that at an Ochromonas biomass below 50 mu g CL-1. the grazing pressure on bacteria is low and with increasing Ochromonas biomass bacteria decline. Furthermore, in Lake Langau, a prominent deep chlorophyll maximum was found with chlorophyll concentrations ca. 50 times higher than in the epilimnion which was build up by the euglenophyte Lepocinclis sp. We conclude that lake morphometry, and specific abiotic characteristics such as mixing behaviour influence the community structure in these mining lakes.}, language = {en} } @article{WeisseBerendonkKamjunkeetal.2011, author = {Weisse, Thomas and Berendonk, Thomas U. and Kamjunke, Norbert and Moser, Michael and Scheffel, U. and Stadler, P. and Weithoff, Guntram}, title = {Significant habitat effects influence protist fitness evidence for local adaptation from acidic mining lakes}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {2}, journal = {Ecosphere : the magazine of the International Ecology University}, number = {12}, publisher = {Wiley}, address = {Washington}, issn = {2150-8925}, doi = {10.1890/ES11-00157.1}, pages = {14}, year = {2011}, abstract = {It is currently controversially discussed if the same freshwater microorganisms occur worldwide wherever their required habitats are realized, i.e., without any adaptation to local conditions below the species level. We performed laboratory experiments with flagellates and ciliates from three acidic mining lakes (AML, pH similar to 2.7) to investigate if similar habitats may affect similar organisms differently. Such man-made lakes provide suitable ecosystem models to test for the significance of strong habitat selection. To this end, we analyzed the growth response of three protist taxa (three strains of the phytoflagellate Chlamydomonas acidophila, two isolates of the phytoflagellate Ochromonas and two species of the ciliate genus Oxytricha) by exposing them to lake water of their origin and from the two other AML in a cross-factorial design. Population growth rates were measured as a proxy for their fitness. Results revealed significant effects of strain, lake (= habitat), and strain X habitat interaction. In the environmentally most adverse AML, all three protist taxa were locally adapted. In conclusion, our study demonstrates that (1) the same habitat may affect strains of the same species differently and that (2) similar habitats may harbor ecophysiologically different strains or species. These results contradict the 'everything is everywhere' paradigm.}, language = {en} } @article{WagnerKamjunke2001, author = {Wagner, Annekatrin and Kamjunke, Norbert}, title = {Reduction of the filtration rate of Daphnia galeata by dissolved photosynthetic products of edible phytoplankton}, year = {2001}, abstract = {The filtration rate of Daphnia galeata was determined in in situ experiments in Bautzen Reservoir and in laboratory experiments, where daphnids were exposed to filtrates that previously contained either natural phytoplankton or cultured eukaryotic algae (Scenedesmus obliquus or Asterionella formosa), respectively. Individual filtration rate (FR) was measured using fluorescent beads, taking into account ingested beads in the gut only. Compared to heated control treatments (100°C), dissolved compounds released by the nutritious cultured algae during the preconditioning phase or by the natural phytoplankton assemblages from Bautzen Reservoir strongly reduced the filtration rate of D. galeata (down to 60 \%). Heating deactivated these dissolved compounds. A significant correlation was found between primary production measured in situ and the reduction of FR in the filtrate of reservoir water, indicating that extra- cellular products released during photosynthesis triggered the reduction of the filtration rate. The ratio of ingested to collected beads was used to quantify the proportion of food, which was not only collected but passed the mouth of D. galeata. The ratio of ingestion to collection was compared between filtered and unfiltered reservoir water both media identical with respect to the concentration of dissolved compounds, whereas other factors (e. g. food concentration, temperature, filtration rate) were different. The changes in this ratio between filtered and unfiltered reservoir water suggest that D. galeata is capable of a chemosensory control of the ingestion behaviour by detecting external metabolites.}, language = {en} } @article{TittelKamjunke2004, author = {Tittel, J{\"o}rg and Kamjunke, Norbert}, title = {Metabolism of dissolved organic carbon by planktonic bacteria and mixotrophic algae in lake neutralisation experiments}, year = {2004}, abstract = {1. Lakes formed in mining pits often contain high concentrations of dissolved ferric iron and sulphate (e.g. 2 and 16 mmol L)1, respectively) and the pH is buffered between 2.5 and 3.5. Efforts to neutralise their water are based on the stimulation of lake internal, bacterial iron- and sulphate reduction. Electron donors may be supplied by organic carbon compounds or indirectly by enhancement of primary production. Here, we investigated the function of mixotrophic algae, which can potentially supplement or deplete the organic carbon pool, in the carbon metabolism and alkalinity budget of an acidic mining lake. 2. Two weeks after organic substrates had been added in a large in situ mesocosm of 30 m diameter, a bloom of Chlamydomonas occurred, reaching a biovolume of 80 mm3 L)1. Growth experiments using filtered lake water showed that the alga reduced the overall dissolved organic carbon (DOC) concentration despite significant photosynthetic activity. However, when Chlamydomonas were grown together with natural bacterioplankton, net DOC consumption did not increase. 3. Uptake experiments using [14C]-glucose indicated that bacteria dominated glucose uptake and remineralisation. Therefore, the DOC leached in the water column was processed mainly by planktonic bacteria. Leached DOC must be regarded as loss, not transferred by larger organisms to the sediment, where reduction processes take place. 4. From phytoplankton biomass and production 2 years after fertilisation we estimated that pelagic photosynthesis does not supply an electron donor capacity capable of reducing more than 2\% of actual stock of acidity per year. We estimated that only the benthic primary production was in a range to compensate for ongoing inputs of iron and sulphate.}, language = {en} } @article{TittelBissingerZippeletal.2003, author = {Tittel, J{\"o}rg and Bissinger, Vera and Zippel, Barbara and Gaedke, Ursula and Bell, Elanor M. and Lorke, Andreas and Kamjunke, Norbert}, title = {Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs}, year = {2003}, abstract = {The majority of species can be grouped into those relying solely on photosynthesis (phototrophy) or those relying solely on the assimilation of organic substances (heterotrophy) to meet their requirements for energy and carbon. However, a special life history trait exists in which organisms combine both phototrophy and heterotrophy. Such 'mixotrophy' is a widespread phenomenon in aquatic habitats and is observed in many protozoan and metazoan organisms. The strategy requires investment in both photosynthetic and heterotrophic cellular apparatus, but the benefits must outweigh these costs. In accordance with the mechanistic resource competition theory, laboratory experiments revealed that pigmented mixotrophs combined light and prey as substitutable resources. Thereby, they reduced prey abundance below the critical food concentration of competing specialist grazers [Rothhaupt, K. O. (1996) Ecology 77, 716-724]. Here, we demonstrate for the first time the important consequences of this strategy for an aquatic community. In the illuminated surface strata of a lake, mixotrophs reduced prey abundance so steeply that grazers from higher trophic levels, consuming both the mixotrophs and their prey, could not persist. Thus, the mixotrophs escaped from both competition and grazing, and remained dominant. Furthermore, the mixotrophs structured the prey abundance along the vertical light gradient creating low densities near the surface and a pronounced maximum of their algal prey at depth. Such deep algal accumulations are typical features of nutrient poor aquatic habitats, previously explained by resource availability. We hypothesize instead that the mixotrophic grazing strategy is responsible for deep algal accumulations in many aquatic environments.}, language = {en} } @article{TittelBissingerGaedkeetal.2005, author = {Tittel, J{\"o}rg and Bissinger, Vera and Gaedke, Ursula and Kamjunke, Norbert}, title = {Inorganic carbon limitation and mixotrophic growth in Chlamydomonas from an acidic mining lake}, issn = {1434-4610}, year = {2005}, abstract = {Plankton communities in acidic mining lakes (pH 2.5-3.3) are species-poor because they face extreme environmental conditions, e.g. 150 mg l(-1) Fe2++Fe3+. We investigated the growth characteristics of the dominant pigmented species, the flagellate Chlamydomonas acidophila, in semi-continuous culture experiments under in situ conditions. The following hypotheses were tested: (1) Low inorganic carbon (IC) concentrations in the epilimnion (e.g. 0.3 mg l(-1)) arising from the low pH limit phototrophic growth (H-1); (2) the additional use of dissolved organic carbon (mixotrophy) leads to higher growth rates under IC-limitation (H-2), and (3) phagotrophy is not relevant (H-3). H- 1 was supported as the culture experiments, in situ PAR and IC concentrations indicated that IC potentially limited phototrophic growth in the mixed surface layers. H-2 was also supported: mixotrophic growth always exceeded pure phototrophic growth even when photosynthesis was saturated. Dark growth in filtered lake water illuminated prior to inoculation provided evidence that Chlamydomonas was able to use the natural DOC. The alga did not grow on bacteria, thus confirming H-3. Chlamydomonas exhibited a remarkable resistance to starvation in the dark. The compensation light intensity (ca. 20 mu mol photons m(-2) s(-1)) and the maximum phototrophic growth (1.50 d(-1)) fell within the range of algae from non-acidic waters. Overall, Chlamydomonas, a typical r-strategist in circum-neutral systems, showed characteristics of a K-strategist in the stable, acidic lake environment in achieving moderate growth rates and minimizing metabolic losses. (c) 2005 Elsevier GmbH. All rights reserved}, language = {en} } @article{TittelWiehleWannickeetal.2009, author = {Tittel, Joerg and Wiehle, Ines and Wannicke, Nicola and Kampe, Heike and Poerschmann, Juergen and Meier, Jutta and Kamjunke, Norbert}, title = {Utilisation of terrestrial carbon by osmotrophic algae}, issn = {1015-1621}, doi = {10.1007/s00027-008-8121-2}, year = {2009}, abstract = {Terrestrial-derived dissolved organic carbon (DOC) contributes significantly to the energetic basis of many aquatic food webs. Although heterotrophic bacteria are generally considered to be the sole consumers of DOC, algae and cyanobacteria of various taxonomic groups are also capable of exploiting this resource. We tested the hypothesis that algae can utilise DOC in the presence of bacteria if organic resources are supplied in intervals by photolysis of recalcitrant DOC. In short-term uptake experiments, we changed irradiation in the range of minutes. As model substrates, polymers of radiolabelled coumaric acid (PCA) were used, which during photolysis are known to release aromatic compounds comparable to terrestrial-derived and refractory DOC. Three cultured freshwater algae readily assimilated PCA photoproducts equivalent to a biomass-specific uptake of 5-60\% of the bacterial competitors present. Algal substrate acquisition did not depend on whether PCA was photolysed continuously or in intervals. However, the data show that photoproducts of terrestrial DOC can be a significant resource for osmotrophic algae. In long-term growth experiments, interval light was applied one hour per day. We allowed cultured Chlamydomonas to compete for ambient DOC of low concentration. We found higher abundances of Chlamydomonas when cultures were irradiated intermittently rather than continuously. These data suggest that photolysis of DOC supports algal heterotrophy, and potentially facilitates growth, when light fluctuations are large, as during the diurnal light cycle. We concluded that osmotrophic algae can efficiently convert terrestrial carbon into the biomass of larger organisms of aquatic food webs.}, language = {en} } @article{LewinKamjunkeMehner2003, author = {Lewin, Wolf-Christian and Kamjunke, Norbert and Mehner, Thomas}, title = {Phosphorus uptake by Microcystis during passage through fish guts}, year = {2003}, abstract = {Herbivorous fish feed on cyanobacteria. Digestability differs, however, between cyanobacteria species without mucous cover and mucilaginous genera such as Microcystis. The latter can pass fish guts almost undamaged, and it has been hypothesized that they can take up nutrients during gut passage. Here we tested whether live Microcystis, as food for juvenile roach labeled with 33P, indeed showed higher radioactivity after gut passage as compared to gut contents in control experiments with fish fed heated Microcystis. Microcystis showed high viability after passage through roach guts, and live colonies had a significantly higher radioactivity than dead ones. We conclude that Microcystis is protected against digestion in roach guts and can directly use the phosphorus supplied in the fish guts during passage.}, language = {en} } @article{KamjunkeVogtWoelfl2009, author = {Kamjunke, Norbert and Vogt, Bernhard and Woelfl, Stefan}, title = {Trophic interactions of the pelagic ciliate Stentor spp. in North Patagonian lakes}, issn = {0075-9511}, doi = {10.1016/j.limno.2008.08.001}, year = {2009}, abstract = {The zooplankton of oligotrophic lakes in North Patagonia is often dominated by mixotrophic ciliates, particularly Stentor amethystinus and Stentor araucanus. Therefore, we tested whether Stentor spp. (i) is an important food for juvenile endemic (Cheirodon australe, Galaxias maculatus, Odontesthes mauleanum, Percichthys trucha) and introduced (Oncorhynchus mykiss) fish species, and (ii) represents a remarkable grazer of bacteria. Ingestion rates of fish estimated by disappearance of Stentor in feeding experiments ranged between 8 (G. maculatus) and 53 (C australe) ciliates per fish and day, and assimilation rates measured by using radioactively labelled Stentor ranged between 3 (P. trucha) and 52 (C australe) ciliates per fish and day. However, although we detected the consumption of Stentor by fish, the daily consumption amounted to at most 0.2\% of the fish biomass which can not cover the energy requirement of the fish. Furthermore, the daily consumption was equivalent to a maximum of 1.6\% of the Stentor standing stock so that fish predation does not seem to be an important mortality factor for the ciliates. The clearance rate of Stentor sp. on natural bacteria was on average 3.8 mu l cil(-1) h(-1). The daily ingestion (mean 3.9 ngC cil(-1) d(-1)) was about 3.5\% of the individual biomass of Stentor sp. Therefore, bacteria ingestion might explain a ciliate growth rate of appr. 1\% d(-1), which was about 17\% of the photosynthesis of endosymbiotic algae. The maximum density of Stentor sp. in the take could ingest about 1 mu g C L-1 d(-1) bacteria which is only 3\% of average bacterial production. Thus, grazing by Stentor sp. does not seem to be a main loss factor for the bacteria.}, language = {en} } @article{KamjunkeTittelKrumbecketal.2005, author = {Kamjunke, Norbert and Tittel, J{\"o}rg and Krumbeck, H. and Beulker, Camilla and Poerschmann, J.}, title = {High heterotrophic bacterial production in acidic, iron-rich mining lakes}, issn = {0095-3628}, year = {2005}, abstract = {The acidic mining lakes of Eastern Germany are characterized by their extremely low pH and high iron concentrations. Low concentrations of CO2 in the epilimnion due to the low pH and reduced light transmission due to dissolved ferric iron potentially limit phytoplankton primary production (PP), whereas dissolved organic carbon (DOC) may promote heterotrophic production of bacteria (HP). We, therefore, tested whether HP exceeds PP in three lakes differing in pH and iron concentration (mean pH 2.3-3.0, 23-500 mg Fe L-1). Bacterial biomass and HP achieved highest values in the most acidic, most iron-rich lake, whereas PP was highest in the least acidic lake. HP was often higher than PP (ratio HP/PP up to 11), indicating that planktonic PP was not the main carbon source for the bacteria. HP was not related to PP and DOC, but HP as well as bacterial biomass increased with decreasing pH. Light stimulated the formation of ferrous iron, changed the DOC composition, and increased the HP in laboratory experiments, suggesting that iron photoreduction caused DOC degradation. This may explain why we found the highest HP in the most acidic and most rich lake. Overall, the importance of bacteria in the cycling of matter and as a basis for the whole food web seemed to increase in more acidic lakes with higher iron concentrations}, language = {en} }