@article{ZimmermannDamesWalzetal.2003, author = {Zimmermann, Bernhard and Dames, Petra and Walz, Bernd and Baumann, Otto}, title = {Distribution and serotonin-induced activation of vacuolar-type H+-ATPase in the salivary glands of the blowfly Calliphora vicina}, year = {2003}, language = {en} } @article{YasuharaBaumannTakeyasu2000, author = {Yasuhara, Jiro and Baumann, Otto and Takeyasu, Kunio}, title = {Localization of Na/K-ATPase in developing and adult Drosophila melanogaster photoreceptors}, year = {2000}, abstract = {Drosophila melanogaster photoreceptors are highly polarized cells and their plasma membrane is organized into distinct domains. Zonula adherens junctions separate a smooth peripheral surface, the equivalent of the basolateral surface in other epithelial cells, from the central surface (cong apical surface). The latter consists of the microvillar rhabdomere and the juxtarhabdomeric domain, a nonmicrovillar area between the rhabdomere and the zonulae adherens. The distribution of Na/K-ATPase over these domains was examined by immunocytochemical, developmental, and genetic approaches. Immunofluorescence and immunogold labeling of adult compound eyes reveal that the distribution of Na/ K-ATPase is concentrated at the peripheral surface in the photoreceptors R1-R6, but extends over the juxtarhabdomeric domain to the rhabdomere in the photoreceptors R7/R8. Developmental analysis demonstrates further that Na/K-ATPase is localized over the entire plasma membrane in all photoreceptors in early pupal eyes. Redistribution of Na/K-ATPase in R1- R6 occurs at about 78\% of pupal life, coinciding with the onset of Rh1-rhodopsin expression on the central surface of these cells. Despite the essential role of Rh1 in structural development and intracellular trafficking, Rh1 mutations do not affect the distribution of Na/K-ATPase. These results suggest that Na/K-ATPase and rhodopsin are involved in distinct intracellular localization mechanisms, which are maintained independent of each other.}, language = {en} } @article{WalzBaumannZimmermannetal.1995, author = {Walz, Bernd and Baumann, Otto and Zimmermann, Bernhard and Ciriacy-Wantrup, E.v.}, title = {Caffeine- and ryanodine-sensitive Ca2+-induced Ca2+ release from the endo plasmatic reticulum in honeybee photoreceptors}, year = {1995}, language = {en} } @article{WalzBaumannKrachetal.2006, author = {Walz, Bernd and Baumann, Otto and Krach, Christian and Baumann, Arnd and Blenau, Wolfgang}, title = {The aminergic control of cockroach salivary glands}, year = {2006}, abstract = {The acinar salivary glands of cockroaches receive a dual innervation from the subesophageal ganglion and the stomatogastric nervous system. Acinar cells are surrounded by a plexus of dopaminergic and serotonergic varicose fibers. In addition, seroton-ergic terminals lie deep in the extracellulor spaces between acinar cells. Excitation-secretion coupling in cockroach salivary glands is stimulated by both dopamine and serotonin. These monoamines cause increases in the intracellular concentrations of cAMP and Ca2+. Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, two elementary secretary processes, namely electrolyte/water secretion and protein secretion, are triggered by different aminergic transmitters. Because of its simplicity and experimental accessibility, cockroach salivary glands have been used extensively as a model system to study the cellular actions of biogenic amines and to examine the pharmacological properties of biogenic amine receptors. In this review, we summarize current knowledge concerning the aminergic control of cockroach salivary glands and discuss our efforts to characterize Periplaneta biogenic amine receptors molecularly}, language = {en} } @article{WalzBaumann1995, author = {Walz, Bernd and Baumann, Otto}, title = {Structure and cellular physiology of Ca2+ stores in invertebrate photoreceptors}, year = {1995}, language = {en} } @article{VossSchmidtWalzetal.2009, author = {Voss, Martin and Schmidt, Ruth and Walz, Bernd and Baumann, Otto}, title = {Stimulus-induced translocation of the protein kinase A catalytic subunit to the apical membrane in blowfly salivary glands}, issn = {0302-766X}, doi = {10.1007/s00441-008-0673-x}, year = {2009}, abstract = {Secretion in blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT), which activates the InsP(3)/Ca2+ pathway and the cAMP/protein kinase A (PKA) pathway in the secretory cells. The latter signaling cascade induces the activation of a vacuolar H+-ATPase on the apical membrane. Here, we have determined the distribution of PKA by using antibodies against the PKA regulatory subunit-II (PKA-RII) and the PKA catalytic subunit (PKA-C) of Drosophila. PKA is present in high concentrations within the secretory cells. PKA-RII and PKA-C co-distribute in non-stimulated glands, being enriched in the basal portion of the secretory cells. Exposure to 8-CPT-cAMP or 5-HT induces the translocation of PKA-C to the apical membrane, whereas the PKA-RII distribution remains unchanged. The recruitment of PKA-C to the apical membrane corroborates our hypothesis that vacuolar H+-ATPase, which is enriched in this membrane domain, is a target protein for PKA.}, language = {en} } @article{VossFechnerWalzetal.2010, author = {Voss, Martin and Fechner, Lennart and Walz, Bernd and Baumann, Otto}, title = {Calcineurin activity augments cAMP/PKA-dependent activation of V-ATPase in blowfly salivary glands}, issn = {0363-6143}, doi = {10.1152/ajpcell.00328.2009}, year = {2010}, abstract = {We have examined the role of the Ca2+-dependent protein phosphatase 2B (calcineurin) in the regulation of the vacuolar H+-ATPase (V-ATPase) in blowfly salivary glands. In response to the neurohormone serotonin [5-hydroxytryptamine (5-HT)] and under the mediation of the cAMP/PKA signaling pathway, the secretory cells assemble and activate V-ATPase molecules at the apical membrane. We demonstrate that the inhibition of calcineurin activity by cyclosporin A, by FK- 506, or by prevention of the elevation of Ca2+ diminishes the 5-HT-induced assembly and activation of V-ATPase. The effect of calcineurin on V-ATPase is mediated by the cAMP/PKA signaling pathway, with calcineurin acting upstream of PKA, because 1) cyclosporin A does not influence the 8-(4-chlorophenylthio) adenosine-3',5'-cyclic monophosphate (8-CPT-cAMP)-induced activation of V-ATPase, and 2) the 5-HT-induced rise in cAMP is highly reduced in the presence of cyclosporin A. Moreover, a Ca2+ rise evoked by the sarco(endo) plasmic reticulum Ca2+-ATPase (SERCA) inhibitor cyclopiazonic acid leads to an increase in intracellular cAMP concentration and a calcineurin-mediated PKA- dependent activation of V-ATPase. We propose that calcineurin activity mediates cross talk between the inositol 1,4,5- trisphosphate/Ca2+ and the cAMP/PKA signaling pathways, thereby augmenting the 5-HT-induced rise in cAMP and thus the cAMP/PKA-mediated activation of V-ATPase.}, language = {en} } @misc{VossBlenauWalzetal.2009, author = {Voss, Martin and Blenau, Wolfgang and Walz, Bernd and Baumann, Otto}, title = {V-ATPase deactivation in blowfly salivary glands is mediated by protein phosphatase 2C}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44360}, year = {2009}, abstract = {The activity of vacuolar H+-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT). 5-HT induces, via protein kinase A, the phosphorylation of V-ATPase subunit C and the assembly of V-ATPase holoenzymes. The protein phosphatase responsible for the dephosphorylation of subunit C and V-ATPase inactivation is not as yet known. We show here that inhibitors of protein phosphatases PP1 and PP2A (tautomycin, ocadaic acid) and PP2B (cyclosporin A, FK-506) do not prevent V-ATPase deactivation and dephosphorylation of subunit C. A decrease in the intracellular Mg2+ level caused by loading secretory cells with EDTA-AM leads to the activation of proton pumping in the absence of 5-HT, prolongs the 5-HT-induced response in proton pumping, and inhibits the dephosphorylation of subunit C. Thus, the deactivation of V-ATPase is most probably mediated by a protein phosphatase that is insensitive to okadaic acid and that requires Mg2+, namely, a member of the PP2C protein family. By molecular biological techniques, we demonstrate the expression of at least two PP2C protein family members in blowfly salivary glands. © 2009 Wiley Periodicals, Inc.}, language = {en} } @article{StuermerBaumannWalz1995, author = {St{\"u}rmer, Karoline and Baumann, Otto and Walz, Bernd}, title = {Actin-dependent light-induced translocation of mitochondria and ER cisternae in the photoreceptor cells of the locust schistocerca gregaria}, year = {1995}, language = {en} } @article{StuermerBaumann1996, author = {St{\"u}rmer, Karoline and Baumann, Otto}, title = {Immunolocalization of kinesin and cytoplasmic dynein in the retina of the locust Shistocerca gregaria}, year = {1996}, language = {en} }