@article{YueMelaniKirschetal.2022, author = {Yue, Yanhua and Melani, Giacomo and Kirsch, Harald and Paarmann, Alexander and Saalfrank, Peter and Campen, Richard Kramer and Tong, Yujin}, title = {Structure and Reactivity of a-Al2O3(0001) Surfaces: How Do Al-I and Gibbsite-like Terminations Interconvert?}, series = {The journal of physical chemistry / publ. weekly by the American Chemical Society. C, Energy, materials, and catalysis}, volume = {126}, journal = {The journal of physical chemistry / publ. weekly by the American Chemical Society. C, Energy, materials, and catalysis}, number = {31}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.2c03743}, pages = {13467 -- 13476}, year = {2022}, abstract = {The alpha-Al2O3(0001) surface has been extensively studied because of its significance in both fundamental research and application. Prior work suggests that in ultra-high-vacuum (UHV), in the absence of water, the so-called Al-I termination is thermodynamically favored, while in ambient, in contact with liquid water, a Gibbsite-like layer is created. While the view of the alpha- Al2O3(0001)/H2O(l) interface appears relatively clear in theory, experimental characterization of this system has resulted in estimates of surface acidity, i.e., isoelectric points, that differ by 4 pH units and surface structure that in some reports has non-hydrogen-bonded surface aluminol (Al-OH) groups and in others does not. In this study, we employed vibrational sum frequency spectroscopy (VSFS) and density functional theory (DFT) simulation to study the surface phonon modes of the differently terminated alpha-Al2O3(0001) surfaces in both UHV and ambient. We find that, on either water dosing of the Al-I in UHV or heat-induced dehydroxylation of the Gibbsite-like in ambient, the surfaces do not interconvert. This observation offers a new explanation for disagreements in prior work on the alpha-Al2O3(0001)/liquid water interface -different preparation methods may create surfaces that do not interconvert-and shows that the surface phonon spectral response offers a novel probe of interfacial hydrogen bonding structure.}, language = {en} } @article{HeidenYueKirschetal.2018, author = {Heiden, Sophia and Yue, Yanhua and Kirsch, Harald and Wirth, Jonas A. and Saalfrank, Peter and Campen, Richard Kramer}, title = {Water dissociative adsorption on α-Al2O3(112̅0) is controlled by surface site undercoordination, density, and topology}, series = {The journal of physical chemistry / publ. weekly by the American Chemical Society : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry / publ. weekly by the American Chemical Society : C, Nanomaterials and interfaces}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.7b10410}, pages = {6573 -- 6584}, year = {2018}, abstract = {α-Al2O3 surfaces are common in a wide variety of applications and useful models of more complicated, environmentally abundant, alumino-silicate surfaces. While decades of work have clarified that all properties of these surfaces depend sensitively on the crystal face and the presence of even small amounts of water, quantitative insight into this dependence has proven challenging. Overcoming this challenge requires systematic study of the mechanism by which water interacts with various α-Al2O3 surfaces. Such insight is most easily gained for the interaction of small amounts of water with surfaces in ultra high vacuum. In this study, we continue our combined theoretical and experimental approach to this problem, previously applied to water interaction with the α-Al2O3 (0001) and (11̅02) surfaces, now to water interaction with the third most stable surface, that is, the (112̅0). Because we characterize all three surfaces using similar tools, it is straightforward to conclude that the (112̅0) is most reactive with water. The most important factor explaining its increased reactivity is that the high density of undercoordinated surface Al atoms on the (112̅0) surface allows the bidentate adsorption of OH fragments originating from dissociatively adsorbed water, while only monodentate adsorption is possible on the (0001) and (11̅02) surfaces: the reactivity of α-Al2O3 surfaces with water depends strongly, and nonlinearly, on the density of undercoordinated surface Al atoms.}, language = {en} }