@article{ZuAmsalemEggeretal.2019, author = {Zu, Fengshuo and Amsalem, Patrick and Egger, David A. and Wang, Rongbin and Wolff, Christian Michael and Fang, Honghua and Loi, Maria Antonietta and Neher, Dieter and Kronik, Leeor and Duhm, Steffen and Koch, Norbert}, title = {Constructing the Electronic Structure of CH3NH3PbI3 and CH3NH3PbBr3 Perovskite Thin Films from Single-Crystal Band Structure Measurements}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.8b03728}, pages = {601 -- 609}, year = {2019}, abstract = {Photovoltaic cells based on halide perovskites, possessing remarkably high power conversion efficiencies have been reported. To push the development of such devices further, a comprehensive and reliable understanding of their electronic properties is essential but presently not available. To provide a solid foundation for understanding the electronic properties of polycrystalline thin films, we employ single-crystal band structure data from angle-resolved photoemission measurements. For two prototypical perovskites (CH3NH3PbBr3 and CH3NH3PbI3), we reveal the band dispersion in two high-symmetry directions and identify the global valence band maxima. With these benchmark data, we construct "standard" photoemission spectra from polycrystalline thin film samples and resolve challenges discussed in the literature for determining the valence band onset with high reliability. Within the framework laid out here, the consistency of relating the energy level alignment in perovskite-based photovoltaic and optoelectronic devices with their functional parameters is substantially enhanced.}, language = {en} } @article{WolffFrischmannSchulzeetal.2018, author = {Wolff, Christian Michael and Frischmann, Peter D. and Schulze, Marcus and Bohn, Bernhard J. and Wein, Robin and Livadas, Panajotis and Carlson, Michael T. and J{\"a}ckel, Frank and Feldmann, Jochen and W{\"u}rthner, Frank and Stolarczyk, Jacek K.}, title = {All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods}, series = {Nature Energy}, volume = {3}, journal = {Nature Energy}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/s41560-018-0229-6}, pages = {862 -- 869}, year = {2018}, abstract = {Full water splitting into hydrogen and oxygen on semiconductor nanocrystals is a challenging task; overpotentials must be overcome for both half-reactions and different catalytic sites are needed to facilitate them. Additionally, efficient charge separation and prevention of back reactions are necessary. Here, we report simultaneous H-2 and O-2 evolution by CdS nanorods decorated with nanoparticulate reduction and molecular oxidation co-catalysts. The process proceeds entirely without sacrificial agents and relies on the nanorod morphology of CdS to spatially separate the reduction and oxidation sites. Hydrogen is generated on Pt nanoparticles grown at the nanorod tips, while Ru(tpy)(bpy)Cl-2-based oxidation catalysts are anchored through dithiocarbamate bonds onto the sides of the nanorod. O-2 generation from water was verified by O-18 isotope labelling experiments, and time-resolved spectroscopic results confirmed efficient charge separation and ultrafast electron and hole transfer to the reaction sites. The system demonstrates that combining nanoparticulate and molecular catalysts on anisotropic nanocrystals provides an effective pathway for visible-light-driven photocatalytic water splitting.}, language = {en} } @article{SalibaCorreaBaenaWolffetal.2018, author = {Saliba, Michael and Correa-Baena, Juan-Pablo and Wolff, Christian Michael and Stolterfoht, Martin and Phung, Thi Thuy Nga and Albrecht, Steve and Neher, Dieter and Abate, Antonio}, title = {How to Make over 20\% Efficient Perovskite Solar Cells in Regular (n-i-p) and Inverted (p-i-n) Architectures}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b00136}, pages = {4193 -- 4201}, year = {2018}, abstract = {Perovskite solar cells (PSCs) are currently one of the most promising photovoltaic technologies for highly efficient and cost-effective solar energy production. In only a few years, an unprecedented progression of preparation procedures and material compositions delivered lab-scale devices that have now reached record power conversion efficiencies (PCEs) higher than 20\%, competing with most established solar cell materials such as silicon, CIGS, and CdTe. However, despite a large number of researchers currently involved in this topic, only a few groups in the world can reproduce >20\% efficiencies on a regular n-i-p architecture. In this work, we present detailed protocols for preparing PSCs in regular (n-i-p) and inverted (p-i-n) architectures with >= 20\% PCE. We aim to provide a comprehensive, reproducible description of our device fabrication , protocols. We encourage the practice of reporting detailed and transparent protocols that can be more easily reproduced by other laboratories. A better reporting standard may, in turn, accelerate the development of perovskite solar cells and related research fields.}, language = {en} }