@article{TechenHilleDoscheetal.2012, author = {Techen, Anne and Hille, Carsten and Dosche, Carsten and Kumke, Michael Uwe}, title = {Fluorescence study of drug-carrier interactions in CTAB/PBS buffer model systems}, series = {Journal of colloid and interface science}, volume = {377}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2012.03.063}, pages = {251 -- 261}, year = {2012}, abstract = {The well-known cationic surfactant hexadecyltrimethylammonium bromide (CTAB) was used as a model carrier to study drug-carrier interactions with fluorescence probes (5-hexadecanoylaminofluorescein (HAF) and 2,10-bis-(3-aminopropyloxy)dibenzo[aj]perylene-8,16-dione (NIR 628) by applying ensemble as well as single molecule fluorescence techniques. The impact of the probes on the micelle parameters (critical micelle concentration, average aggregation number, hydrodynamic radius) was investigated under physiological conditions. In the presence of additional electrolytes, such as buffer, the critical micelle concentration decreased by a factor of about 10. In contrast, no influence of the probes on the critical micelle concentration and on average aggregation number was observed. The results show that HAF does not affect the characteristics of CTAB micelles. Analyzing fluorescence correlation spectroscopy data and time-resolved anisotropy decays in terms of the "two-step" in combination with the "wobbling-in-cone" model, it was proven that HAF and NIR 628 are differently associated with the micelles. Based on ensemble and single molecule fluorescence experiments, intra- and intermicellar energy transfer process between the two dyes were probed and characterized.}, language = {en} } @article{TechenCzaplaMoellnitzetal.2013, author = {Techen, Anne and Czapla, Sylvia and M{\"o}llnitz, Kristian and Budach, Dennis B. and Wessig, Pablo and Kumke, Michael Uwe}, title = {Synthesis and spectroscopic characterization of fluorophore-labeled oligospiroketal rods}, series = {Helvetica chimica acta}, volume = {96}, journal = {Helvetica chimica acta}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0018-019X}, doi = {10.1002/hlca.201200616}, pages = {2046 -- 2067}, year = {2013}, abstract = {Fluorescence probes consisting of well-established fluorophores in combination with rigid molecular rods based on spirane-type structures were investigated with respect to their fluorescence properties under different solvent conditions. The attachment of the dyes was accomplished by 1,3-dipolar cycloaddition between alkynes and azides (click' reaction) and is a prime example for a novel class of sensor constructs. Especially, the attachment of two (different) fluorophores on opposite sides of the molecular rods paves the way to new sensor systems with less bulky (compared to the conventional DNA- or protein-based concepts), nevertheless rigid spacer constructs, e.g., for FRET-based sensing applications. A detailed photophysical characterization was performed in MeOH (and in basic H2O/MeOH mixtures) for i) rod constructs containing carboxyfluorescein, ii) rod constructs containing carboxyrhodamine, iii) rod constructs containing both carboxyfluorescein and carboxyrhodamine, and iv) rod constructs containing both pyrene and perylene parts. For each dye (pair), two rod lengths with different numbers of spirane units were synthesized and investigated. The rod constructs were characterized in ensemble as well as single-molecule fluorescence experiments with respect to i) specific roddye and ii) dyedye interactions. In addition to MeOH and MeOH/NaOH, the rod constructs were also investigated in micellar systems, which were chosen as a simplified model for membranes.}, language = {en} }