@article{CheaSchadeReinickeetal.2022, author = {Chea, Sany and Schade, Kristin and Reinicke, Stefan and Bleul, Regina and Rosencrantz, Ruben R.}, title = {Synthesis and self-assembly of cytidine- and guanosine-based copolymers}, series = {Polymer Chemistry}, volume = {13}, journal = {Polymer Chemistry}, number = {35}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/d2py00615d}, pages = {5058 -- 5067}, year = {2022}, abstract = {The base pairing property and the "melting" behavior of oligonucleotides can take advantage to develop new smart thermoresponsive and programmable materials. Complementary cytidine- (C) and guanosine- (G) based monomers were blockcopolymerized using RAFT polymerization technique with poly-(N-(2-hydroxypropyl) methacrylamide) (pHPMA) as the hydrophilic macro chain transfer agent (macro-CTA). C-C, G-G and C-G hydrogen bond interactions of blockcopolymers with respectively C and G moieties have been investigated using SEM, DLS and UV-Vis. Mixing and heating both complementary copolymers resulted in reforming new aggregates. Due to the ribose moiety of the isolated nucleoside-bearing blockcopolymers, the polarity is increased for better solubility. Self-assembly investigations of these bioinspired compounds are the crucial basis for the development of potential future drug delivery systems.}, language = {en} }