@article{KlikaKramerKleinpeter2009, author = {Klika, Karel D. and Kramer, Markus and Kleinpeter, Erich}, title = {DFT computational studies of hydrogen bonding-based diastereomeric complexes : limitations and applications to enantiodifferentiation}, issn = {0166-1280}, doi = {10.1016/j.theochem.2009.08.003}, year = {2009}, abstract = {Molecular modeling calculations using DFT at the B3LYP/6-31G(d,p) level of theory have been performed on diastereomeric complexes formed between chiral carboxylate anions and chiral urea receptors, a combination previously demonstrated to enable enantiodifferentiation by electrochemical sensing. The calculations correctly predicted the stability order of the enantiomers in acetonitrile solution when the distinction between the enantiomers was above the declared threshold reliability value of 1 kcal mol;1 for computations at this level of theory. Thus, the calculations can not only be applied to predict the likely success of undertakings using the analytical method, it can also, provided ;E is sufficient, potentially be used to determine the absolute configuration of chiral analytes with at least the racemate in hand. The previously successful enantiodifferentiations of various amino acids and alcohols using chiral ion mobility spectroscopy (CIMS) with (S)-2-butanol as the chiral selector were also evaluated by DFT calculations. The calculations again correctly predicted the stability order of the enantiomers when the calculated ;E was above the threshold value though cases not providing a value for ;E above the threshold value was problematic for this system. Attempts to address this shortcoming included an expanded conformational evaluation, a broader analytical approach, and an extended basis set.}, language = {en} } @article{BoehmTomaszcikovaImrichetal.2009, author = {B{\"o}hm, Stanislav and Tomaszcikov{\´a}, Jana and Imrich, J{\´a}n and Danihel, Ivan and Kristian, Pavol and Koch, Andreas and Kleinpeter, Erich and Klika, Karel D.}, title = {Computational study to assign structure, tautomerism, E/Z and s-cis/s-trans isomerism, pi-delocalization, partial aromaticity, and the ring size of 1,3-thiazolidin-4-ones and 1,3-thiazin-4-ones formed from thiosemicarbazides}, issn = {0166-1280}, year = {2009}, abstract = {A set of structures encompassing 1-(9-acridinyl)thiosemicarbazide and its 2-methyl derivative together with their various tautomeric structures; the 5-membered ring 1,3-thiazolidin-4-one products resulting from the reaction of 1- (9-acridinyl)thiosemicarbazide and its 2-methyl derivative with dimethyl acetylenedicarboxylate (DMAD) together with the alternative 6-membered ring isomeric reaction products as well as other potential isomeric structures; and the 6- membered ring 1,3-thiazin-4-one product resulting from the reaction of 2-methyl-1-(9-acridinyl)thiosemicarbazide with methyl propiolate (MP) together with the alternative 5-membered ring isomeric reaction product were all extensively studied by molecular modeling calculations using DFT at the B3LYP/6-31G(d,p) level of theory. The ring-chain tautomerism of the thiosemicarbazides, the regio- and stereoselectivity of the reactions, the adopted conformations and E/Z configurations of the products, the prototropic tautomerism of all the compounds, and the reasons for the predominance of the s-cis conformation of the Z configuration of the 1,3-thiazolidin-4-one product in particular were all extensively analyzed. Comparison of the modeled structures were also made to the 1,3-thiazolidin-4-one and 1,3-thiazin-4-one structures of the methyl derivative as well as 1-(9-acridinyl)thiosemicarbazide available from X-ray crystallographic analysis. Tactics utilizing spectroscopic methods {IR frequencies (;) and NMR chemical shifts (;), scalar coupling constants (J), and NOEs (;)} in conjunction with molecular modeling calculations of the spectral parameters {frequency calculations (;) and NMR ; using the GIAO method and J by calculation of the Fermi contact term} were evaluated in terms of proving 5- or 6-membered ring formation.}, language = {en} } @article{BoehmTomašcikovaImrichetal.2009, author = {Boehm, Stanislav and Tomašcikov{\´a}, Jana and Imrich, J{\´a}n and Danihel, Ivan and Kristian, Pavol and Koch, Andreas and Kleinpeter, Erich and Klika, Karel D.}, title = {Computational study to assign structure, tautomerism, E/Z and s-cis/s-trans isomerism, pi-delocalization, partial aromaticity, and the ring size of 1,3-thiazolidin-4-ones and 1,3-thiazin-4-ones formed from thiosemicarbazides}, issn = {0166-1280}, doi = {10.1016/j.theochem.2009.09.019}, year = {2009}, abstract = {A set of structures encompassing 1-(9-acridinyl)thiosemicarbazide and its 2-methyl derivative together with their various tautomeric structures; the 5-membered ring 1,3-thiazolidin-4-one products resulting from the reaction of 1- (9-acridinyl)thiosemicarbazide and its 2-methyl derivative with dimethyl acetylenedicarboxylate (DMAD) together with the alternative 6-membered ring isomeric reaction products as well as other potential isomeric structures; and the 6- membered ring 1,3-thiazin-4-one product resulting from the reaction of 2-methyl-1-(9-acridinyl)thiosemicarbazide with methyl propiolate (MP) together with the alternative 5-membered ring isomeric reaction product were all extensively studied by molecular modeling calculations using DFT at the B3LYP/6-31G(d,p) level of theory. The ring-chain tautomerism of the thiosemicarbazides, the regio- and stereoselectivity of the reactions, the adopted conformations and E/Z configurations of the products, the prototropic tautomerism of all the compounds, and the reasons for the predominance of the s-cis conformation of the Z configuration of the 1,3-thiazolidin-4-one product in particular were all extensively analyzed. Comparison of the modeled structures were also made to the 1,3-thiazolidin-4-one and 1,3-thiazin-4-one structures of the methyl derivative as well as 1-(9-acridinyl)thiosemicarbazide available from X-ray crystallographic analysis. Tactics utilizing spectroscopic methods {1R frequencies (nu) and NMR chemical shifts (delta), scalar coupling constants (J), and NOEs (eta)} in conjunction with molecular modeling calculations of the spectral parameters (frequency calculations (v) and NMR 6 using the GIAO method and J by calculation of the Fermi contact term) were evaluated in terms of proving 5- or 6-membered ring formation.}, language = {en} }