@article{YenesewMushibeIndulietal.2005, author = {Yenesew, Abiy and Mushibe, E. K. and Induli, M. and Derese, Solomon and Midiwo, Jacob O. and Kabaru, Jacques M. and Heydenreich, Matthias and Koch, Andreas and Peter, Martin G.}, title = {7a-O-methyldeguelol, a modified rotenoid with an open ring-C, from the roots of Derris trifoloata}, issn = {0031-9422}, year = {2005}, abstract = {From the acetone extract of the roots of Derris trifoliata an isollavonoid derivative, named 7a-O- methyldeguelol, a modified rotenoid with an open ring-C, representing a new sub-class of isollavonoids (the sub-class is here named as rotenoloid), was isolated and characterised. In addition, the known rotenoids, rotenone, deguelin and alpha-toxicarol, were identified. The structures were determined on the basis of spectroscopic evidence. Rotenone and deguelin were identified as the larvicidal principles of the acetone extract of the roots of Derris trifoliata. (c) 2005 Elsevier Ltd. All rights reserved}, language = {en} } @article{YenesewKiplagatDereseetal.2006, author = {Yenesew, Abiy and Kiplagat, John T. and Derese, Solomon and Midiwo, Jacob O. and Kabaru, Jacques M. and Heydenreich, Matthias and Peter, Martin G.}, title = {Two unusual rotenoid derivatives, 7a-O-methyl-12a-hydroxydeguelol and spiro-13-homo-13-oxaelliptone, from the seeds of Derris trifoliata}, doi = {10.1016/j.phytochem.2006.01.002}, year = {2006}, abstract = {The crude methanol extract of the seeds of Derris trifoliata showed potent and dose dependent larvicidal activity against the 2nd instar larvae of Aedes aegypti. From this extract two unusual rotenoid derivatives, a rotenoloid (named 7a-O-methyl-12a-hydroxydeguelol) and a spirohomooxarotenoid (named spiro-13-homo-13-oxaelliptone), were isolated and characterised. In addition a rare natural chromanone (6,7-dimethoxy-4-chromanone) and the known rotenoids rotenone, tephrosin and dehydrodeguelin were identified. The structures were assigned on the basis of spectroscopic evidence. The larvicidal activity of the crude extract is mainly due to rotenone. (c) 2006 Elsevier Ltd. All rights reserved}, language = {en} }