@article{KoehlerDoenchOttetal.2009, author = {K{\"o}hler, Ralf and Doench, Ingo and Ott, Patrick and Laschewsky, Andr{\´e} and Fery, Andreas and Krastev, Rumen}, title = {Neutron reflectometry study of swelling of polyelectrolyte multilayers in water vapors : influence of charge density of the polycation}, issn = {0743-7463}, doi = {10.1021/La901508w}, year = {2009}, abstract = {We studied the swelling of polyelectrolyte (PE) multilayers (PEM) in water (H2O) vapors. The PEM were made from polyanion poly(styrene sulfonate) (PSS) and polycation poly(diallyldimethylammonium chloride)-N-methyl-N-vinylacetamide (pDADMAC-NMVA). While PSS is a fully charged polyanion, pDADMAC-NMVA is a random copolymer made of charged pDADMAC and uncharged NMVA monomer units. Variation of the relative amount of these two units allows for controlling the charge density of pDADMAC-NMVA. The degree of swelling was studied as it function of the relative humidity in the experimental chamber (respectively water concentration in the gas phase) for PEM prepared from PSS and pDADMAC-NMVA with their different charge densities - 100\%, 89\% and 75\%. The films were prepared by means of spraying technique and consisted of six PE couples-PSS/pDADMAC-NMVA. Neutron reflectometry was applied as main tool to observe the swelling process. The technique allows to obtain in a single experiment information about film thickness and amount of water in the film. The experiments were complemented with AFM measurements to obtain the thickness of the films. It was found that the Film thickness increases when the charge density of the polycation decreases. The swelling of the PEM increases with the relative humidity and it depends on the charge density of pDADMAC-NMVA. The swelling behavior is 2-fold, splitting up in a charge dependent mode with relatively little volume increase, and a second mode With high volume expansion, which is independent from charge density of PEM. The "swelling transition" occurs for all samples at a relative humidity about 60\% and a volume increase of ca. 20\%. The results were interpreted according to the Flory-Huggins theory which assumes a phase separation in PEM network at higher water contents.}, language = {en} } @article{GoldhahnSchubertSchlaadetal.2018, author = {Goldhahn, Christian and Schubert, Jonas and Schlaad, Helmut and Ferri, James K. and Fery, Andreas and Chanana, Munish}, title = {Synthesis of Metal@Protein@Polymer Nanoparticles with Distinct Interfacial and Phase Transfer Behavior}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b02314}, pages = {6717 -- 6727}, year = {2018}, abstract = {In this study, we present a novel and facile method for the synthesis of multiresponsive plasmonic nanoparticles with an interesting interfacial behavior. We used thiol-initiated photopolymerization technique to graft poly(N-isopropylacrylamide) onto the surface of protein-coated gold nanoparticles. The combination of the protein bovine serum albumin with the thermoresponsive polymer leads to smart hybrid nanoparticles, which show a stimuli-responsive behavior of their aggregation and a precisely controllable phase transfer behavior. Three interconnected stimuli, namely, temperature, ionic strength, and pH, were identified as property tuning switches. The aggregation was completely reversible and was quantified by determining Smoluchowski's instability ratios with time-resolved dynamic light scattering. The tunable hydrophobicity via the three stimuli was used to study interfacial activity and phase transfer behavior of the nanoparticles at an octanol/water interface. Depending on the type of coating (i.e., protein or protein/polymer) as well as the three external stimuli, the nanoparticles either remained in the aqueous phase (aggregated or nonaggregated), accumulated at the oil/water interface, wet the glass wall between the glass vial and the octanol phase, or even crossed the oil/water interface. Such smart and interfacially active nanoparticles with external triggers that are capable of crossing oil/water interfaces under physiological conditions open up new avenues for a variety of applications ranging from the development of drug-delivery nanosystems across biological barriers to the preparation of new catalytic materials.}, language = {en} } @article{FudickarFeryLinker2005, author = {Fudickar, Werner and Fery, Andreas and Linker, Torsten}, title = {Reversible light and air-driven lithography by singlet oxygen}, issn = {0002-7863}, year = {2005}, language = {en} } @article{DelormeDuboisGarnieretal.2006, author = {Delorme, Nicolas and Dubois, Monique and Garnier, Sebastien and Laschewsky, Andr{\´e} and Weinkamer, Richard and Zemb, Thomas and Fery, Andreas}, title = {Surface immobilization and mechanical properties of catanionic hollow faceted polyhedrons}, issn = {1520-1758}, doi = {10.1021/Jp054473+}, year = {2006}, abstract = {We report here for the first time on surface immobilization of hollow faceted polyhedrons formed from catanionic surfactant mixtures. We find that electrostatic interaction with the substrate dominates their adhesion behavior. Using polyelectrolyte coated surfaces with tailored charge densities, polyhedrons can thus be immobilized without complete spreading, which allows for further study of their mechanical properties using AFM force measurements. The elastic response of individual polyhedrons can be locally resolved, showing pronounced differences in stiffness between faces and vertexes of the structure, which makes these systems interesting as models for structurally similar colloidal scale objects such as viruses, where such effects are predicted but cannot be directly observed due to the smaller dimensions. Elastic constants of the wall material are estimated using shell and plate deformation models and are found to be a factor of 5 larger than those for neutral lipidic bilayers in the gel state. We discuss the molecular origins of this high stiffness}, language = {en} }