@article{MondalKreuzerBehrensetal.2019, author = {Mondal, Suvendu Sekhar and Kreuzer, Alex and Behrens, Karsten and Sch{\"u}tz, Gisela and Holdt, Hans-J{\"u}rgen and Hirscher, Michael}, title = {Systematic experimental study on quantum sieving of hydrogen isotopes in metal-amide-imidazolate frameworks with narrow 1-D channels}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {20}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201900183}, pages = {1311 -- 1315}, year = {2019}, abstract = {Quantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal-organic frameworks having 1-D channels, named IFP-1, -3, -4 and -7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 angstrom for IFP-1, 3.1 angstrom for IFP-3) and smaller (2.1 angstrom for IFP-7, 1.7 angstrom for IFP-4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP-7 and IFP-4, but due to the thermally induced flexibility, so-called gate-opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H-2 or D-2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H-2/D-2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP-7 shows a very low selectivity not higher than S=2. The selectivity of the materials with the smallest pore aperture IFP-4 has a constant value of S approximate to 2 for different exposure times and pressures, which can be explained by the 1-D channel structure. Due to the relatively small cavities between the apertures of IFP-4 and IFP-7, molecules in the channels cannot pass each other, which leads to a single-file filling. Therefore, no time dependence is observed, since the quantum sieving effect occurs only at the outermost pore aperture, resulting in a low separation selectivity.}, language = {en} } @article{MondalBehrensMatthesetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Matthes, Philipp R. and Sch{\"o}nfeld, Fabian and Nitsch, J{\"o}rn and Steffen, Andreas and Primus, Philipp-Alexander and Kumke, Michael Uwe and M{\"u}ller-Buschbaum, Klaus and Holdt, Hans-J{\"u}rgen}, title = {White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {18}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7534}, doi = {10.1039/C4TC02919D}, pages = {4623 -- 4631}, year = {2015}, abstract = {Co-doping of the MOF 3∞[Zn(2-methylimidazolate-4-amide-5-imidate)] (IFP-1 = Imidazolate Framework Potsdam-1) with luminescent Eu3+ and Tb3+ ions presents an approach to utilize the porosity of the MOF for the intercalation of luminescence centers and for tuning of the chromaticity to the emission of white light of the quality of a three color emitter. Organic based fluorescence processes of the MOF backbone as well as metal based luminescence of the dopants are combined to one homogenous single source emitter while retaining the MOF's porosity. The lanthanide ions Eu3+ and Tb3+ were doped in situ into IFP-1 upon formation of the MOF by intercalation into the micropores of the growing framework without a structure directing effect. Furthermore, the color point is temperature sensitive, so that a cold white light with a higher blue content is observed at 77 K and a warmer white light at room temperature (RT) due to the reduction of the organic emission at higher temperatures. The study further illustrates the dependence of the amount of luminescent ions on porosity and sorption properties of the MOF and proves the intercalation of luminescence centers into the pore system by low-temperature site selective photoluminescence spectroscopy, SEM and EDX. It also covers an investigation of the border of homogenous uptake within the MOF pores and the formation of secondary phases of lanthanide formates on the surface of the MOF. Crossing the border from a homogenous co-doping to a two-phase composite system can be beneficially used to adjust the character and warmth of the white light. This study also describes two-color emitters of the formula Ln@IFP-1a-d (Ln: Eu, Tb) by doping with just one lanthanide Eu3+ or Tb3+.}, language = {en} } @article{MondalBehrensMatthesetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Matthes, Philipp R. and Sch{\"o}nfeld, Fabian and Nitsch, J{\"o}rn and Steffen, Andreas and Primus, Philipp-Alexander and Kumke, Michael Uwe and M{\"u}ller-Buschbaum, Klaus and Holdt, Hans-J{\"u}rgen}, title = {White light emission of IFP-1 by in situ co-doping of the MOF pore system with Eu3+ and Tb3+}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {3}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {18}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/c4tc02919d}, pages = {4623 -- 4631}, year = {2015}, language = {en} } @article{MondalBehrensKellingetal.2015, author = {Mondal, Suvendu Sekhar and Behrens, Karsten and Kelling, Alexandra and Nabein, Hans-Peter and Schilde, Uwe and Holdt, Hans-J{\"u}rgen}, title = {Two Cd-II/Co-II-Imidazolate Coordination Polymers: Syntheses, Crystal Structures, Stabilities, and Luminescent/Magnetic Properties}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {641}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500526}, pages = {1991 -- 1997}, year = {2015}, abstract = {Cadmium(II) based 2D coordination polymer [Cd(L1)(2)(DMF)(2)] (1) (L1 = 4,5-dicyano-2-methylimidazolate, DMF = N,N'-dimethylformamide) and 2D cobalt(II)-imidazolate framework [Co(L3)(4)] (2) (L3 = 4,5-diamide-2-ethoxyimidazolate) were synthesized under solvothermal reaction conditions. The materials were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction measurement (PXRD) and single-crystal X-ray diffraction. Compound 1 has hexacoordinate Cd-II ions and forms a zigzag chain-like coordination polymer structure, whereas compound 2 exhibits a 2D square grid type structure. The thermal stability analysis reveals that 2 showed an exceptional thermal stability up to 360 degrees C. Also, 2 maintained its fully crystalline integrity in boiling water as confirmed by PXRD. The solid state luminescent property of 1 was not observed at room temperature. Compound 2 showed an independent high spin central Co-II atom.}, language = {en} } @article{HovestadtBendtMondaletal.2017, author = {Hovestadt, Maximilian and Bendt, Stephan and Mondal, Suvendu Sekhar and Behrens, Karsten and Reif, Florian and Dopken, Merle and Holdt, Hans-J{\"u}rgen and Keil, Frerich J. and Hartmann, Martin}, title = {Experimental and Theoretical Analysis of the Influence of Different Linker Molecules in Imidazolate Frameworks Potsdam (IFP-n) on the Separation of Olefin-Paraffin Mixtures}, series = {Langmuir}, volume = {33}, journal = {Langmuir}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.7b02016}, pages = {11170 -- 11179}, year = {2017}, abstract = {Four metal organic frameworks with similar topology but different chemical environment inside the pore structure, namely, IFP-1, IFP-3, IFP-5, and IFP-7, have been investigated with respect to the separation potential for olefin paraffin mixtures as well as the influence of the different linkers on adsorption properties using experiments and Monte Carlo simulations. All IFP structures show a higher adsorption of ethane compared to ethene with the exception of IFP-7 which shows no selectivity in breakthrough experiments. For propane/propane separation, all adsorbents show a higher adsorption for the olefin. The experimental results agree quite well with the simulated values except for the IFP-7, which is presumably due to the flexibility of the structure. Moreover, the experimental and simulated isotherms were confirmed with breakthrough experiments that render IFP-1, IFP-3, and IFP-5 as suitable for the purification of ethene from ethane.}, language = {en} } @article{DebatinMoellmerMondaletal.2012, author = {Debatin, Franziska and M{\"o}llmer, Jens and Mondal, Suvendu Sekhar and Behrens, Karsten and M{\"o}ller, Andreas and Staudt, Reiner and Thomas, Arne and Holdt, Hans-J{\"u}rgen}, title = {Mixed gas adsorption of carbon dioxide and methane on a series of isoreticular microporous metal-organic frameworks based on 2-substituted imidazolate-4-amide-5-imidates}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {20}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm15811f}, pages = {10221 -- 10227}, year = {2012}, abstract = {In this work the adsorption of CO2 and CH4 on a series of isoreticular microporous metal-organic frameworks based on 2-substituted imidazolate-4-amide-5-imidates, IFP-1-IFP-6 (IFP Imidazolate Framework Potsdam), is studied firstly by pure gas adsorption at 273 K. All experimental isotherms can be nicely described by using the Toth isotherm model and show the preferred adsorption of CO2 over CH4. At low pressures the Toth isotherm equation exhibits a Henry region, wherefore Henry's law constants for CO2 and CH4 uptake could be determined and ideal selectivity (alpha CO2/CH4) has been calculated. Secondly, selectivities were calculated from mixture data by using nearly equimolar binary mixtures of both gases by a volumetric-chromatographic method to examine the IFPs. Results showed the reliability of the selectivity calculation. Values of (alpha CO2/CH4) around 7.5 for IFP-5 indicate that this material shows much better selectivities than IFP-1, IFP-2, IFP-3, IFP-4 and IFP-6 with slightly lower selectivity (alpha CO2/CH4) = 4-6. The preferred adsorption of CO2 over CH4 especially of IFP-5 and IFP-4 makes these materials suitable for gas separation application.}, language = {en} } @article{BehrensMondalNoeskeetal.2015, author = {Behrens, Karsten and Mondal, Suvendu Selchar and N{\"o}ske, Robert and Baburin, Igor A. and Leoni, Stefano and G{\"u}nter, Christina and Weber, Jens and Holdt, Hans-J{\"u}rgen}, title = {Microwave-Assisted Synthesis of Defects Metal-Imidazolate-Amide-Imidate Frameworks and Improved CO2 Capture}, series = {Inorganic chemistry}, volume = {54}, journal = {Inorganic chemistry}, number = {20}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/acs.inorgchem.5b01952}, pages = {10073 -- 10080}, year = {2015}, abstract = {In this work, we report three isostructural 3D frameworks, named IFP-11 (R = Cl), IFP-12 (R = Br), and IFP-13 (R = Et) (IFP = Imidazolate Framework Potsdam) based on a cobalt(II) center and the chelating linker 2-substituted imidazolate-4-amide-5-imidate. These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under microwave (MW)-assisted conditions in DMF. Structure determination of these IFPs was investigated by IR spectroscopy and a combination of powder X-ray diffraction (PXRD) with structure modeling. The structural models were initially built up from the single-crystal X-ray structure determination of IFP-5 (a cobalt center and 2-methylimidazolate-4-amide-5-imidate linker based framework) and were optimized by using density functional theory calculations. Substitution on position 2 of the linker (R = Cl, Br, and Et) in the isostructural IFP-11, -12, and -13 allowed variation of the potential pore window in 1D hexagonal channels (3.8 to 1.7 angstrom A). The potential of the materials to undergo specific interactions with CO2 was measured by the isosteric heat adsorption. Further, we resynthesized zinc based IFPs, namely IFP-1 = Me), IFP-2 (R = Cl), IFP-3 (R = Br), and IFP-4 (R = Et), and cobalt based IFP-5 under MW-assisted conditions with higher yield. The transition from a nucleation phase to the pure crystalline material of IFP-1 in MW-assisted synthesis depends on reaction time. IFP-1, -3, and -5, which are synthesized by MW-assisted conditions, showed an enhancement of N-2 and CO2, compared to the analogous conventional electrical (CE) heating method based materials due to crystal defects.}, language = {en} } @article{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {RSC Advances}, volume = {12}, journal = {RSC Advances}, publisher = {RSC}, address = {London}, issn = {2046-2069}, doi = {10.1039/d2ra05581c}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @article{BalischewskiChoiBehrensetal.2021, author = {Balischewski, Christian and Choi, Hyung-Seok and Behrens, Karsten and Beqiraj, Alkit and K{\"o}rzd{\"o}rfer, Thomas and Gessner, Andre and Wedel, Armin and Taubert, Andreas}, title = {Metal sulfide nanoparticle synthesis with ionic liquids state of the art and future perspectives}, series = {ChemistryOpen}, volume = {10}, journal = {ChemistryOpen}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.202000357}, pages = {272 -- 295}, year = {2021}, abstract = {Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nano-particle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.}, language = {en} } @article{BalischewskiBhattacharyyaSperlichetal.2022, author = {Balischewski, Christian and Bhattacharyya, Biswajit and Sperlich, Eric and G{\"u}nter, Christina and Beqiraj, Alkit and Klamroth, Tillmann and Behrens, Karsten and Mies, Stefan and Kelling, Alexandra and Lubahn, Susanne and Holtzheimer, Lea and Nitschke, Anne and Taubert, Andreas}, title = {Tetrahalidometallate(II) ionic liquids with more than one metal}, series = {Chemistry - a European journal}, volume = {28}, journal = {Chemistry - a European journal}, number = {64}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3765}, doi = {10.1002/chem.202201068}, pages = {13}, year = {2022}, abstract = {Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.}, language = {en} }