@misc{SchultzeLemkeLoehmannsroeben2004, author = {Schultze, Rainer H. and Lemke, Matthias and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Laser-induced fluorescence (LIF) spectroscopy for the in situ analysis of petroleum product-contaminated soils}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12271}, year = {2004}, abstract = {Contents: Introduction Experimental Techniques: The LIF demonstrator unit - The LIF demonstrator unit - The mobile LIF spectrometer OPTIMOS - Investigated petroleum products and soil samples Results and Discussion: Photophysical properties of the petroleum products LIF spectroscopic investigations of oil-spiked samples LIF spectroscopic investigations of real-world soils Conclusions}, language = {en} } @misc{LemkeFernandezTrujilloLoehmannsroeben2005, author = {Lemke, Matthias and Fern{\´a}ndez-Trujillo, Rebeca and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {In-situ LIF analysis of biological and petroleum-based hydraulic oils on soil}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12268}, year = {2005}, abstract = {Absorption and fluorescence properties of 4 hydraulic oils (3 biological and 1 petroleum-based) were investigated. In-situ LIF (laser-induced fluorescence) analysis of the oils on a brown sandy loam soil was performed. With calibration, quantitative detection was achieved. Estimated limits of detection were below ca. 500 mg/kg for the petroleum-based oil and ca. 2000 mg/kg for one biological oil. A semi-quantitative classification scheme is proposed for monitoring of the biological oils. This approach was applied to investigate the migration of a biological oil in soil-containing compartments, namely a soil column and a soil bed.}, language = {en} }