@article{YinSchubertStilleretal.2008, author = {Yin, Chunhong and Schubert, Marcel and Stiller, Burkhard and Castellani, Mauro and Neher, Dieter and Kumke, Michael Uwe and H{\"o}rhold, Hans-Heinrich}, title = {Tuning of the excited-state properties and photovoltaic performance in PPV-based polymer blends}, doi = {10.1021/Jp803977k}, year = {2008}, language = {en} } @article{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoai, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-34203-x}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @article{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoaee, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C-60-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-34203-x}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C-60 interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C-60 interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110mV, and retain >97\% of the initial efficiency after 400h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells. Effective transport layers are essential to suppress non-radiative recombination losses. Here, the authors introduce phenylamino-functionalized ortho-carborane as an interfacial layer, and realise inverted perovskite solar cells with efficiency of over 23\% and operational stability of T97=400h.}, language = {en} } @misc{YeZhangWarbyetal.2022, author = {Ye, Fangyuan and Zhang, Shuo and Warby, Jonathan and Wu, Jiawei and Gutierrez-Partida, Emilio and Lang, Felix and Shah, Sahil and Saglamkaya, Elifnaz and Sun, Bowen and Zu, Fengshuo and Shoaee, Safa and Wang, Haifeng and Stiller, Burkhard and Neher, Dieter and Zhu, Wei-Hong and Stolterfoht, Martin and Wu, Yongzhen}, title = {Overcoming C₆₀-induced interfacial recombination in inverted perovskite solar cells by electron-transporting carborane}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1317}, issn = {1866-8372}, doi = {10.25932/publishup-58770}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587705}, pages = {12}, year = {2022}, abstract = {Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C₆₀ interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C₆₀ interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23\% with a low non-radiative voltage loss of 110 mV, and retain >97\% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.}, language = {en} } @article{YangJaiserStilleretal.2006, author = {Yang, Xiao Hui and Jaiser, Frank and Stiller, Burkhard and Neher, Dieter and Galbrecht, Frank and Scherf, Ullrich}, title = {Efficient polymer electrophosphoreseent devices with interfacial layers}, series = {Advanced functional materials}, volume = {16}, journal = {Advanced functional materials}, number = {16}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.200500834}, pages = {2156 -- 2162}, year = {2006}, abstract = {It is shown that several polymers can form insoluble interfacial layers on a poly (ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer after annealing of the double-layer structure. The thickness of the interlayer is dependent on the characteristics of the underlying PEDOT.PSS and the molecular weight of the polymers. It is further shown that the electronic structures of the interlayer polymers have a significant effect on the properties of red-light-emitting polymer-based electrophosphorescent devices. Upon increasing the highest occupied molecular orbital and lowest unoccupied molecular orbital positions, a significant increase in current density and device efficiency is observed. This is attributed to efficient blocking of electrons in combination with direct injection of holes from the interlayer to the phosphorescent dye. Upon proper choice of the interlayer polymer, efficient red, polymer-based electrophosphorescent devices with a peak luminance efficiency of 5.5 cd A(-1) (external quantum efficiency = 6 \%) and a maximum power-conversion efficiency of 5 Im W-1 can be realized.}, language = {en} } @article{TejedorOriolPinoletal.2005, author = {Tejedor, R. M. and Oriol, L. and Pinol, M. and Serrano, J. L. and Strehmel, Veronika and Stiller, Burkhard and Stumpe, Joachim}, title = {Photoreactive main-chain liquid-crystalline polyesters : Synthesis, characterization, and photochemistry}, issn = {0887-624X}, year = {2005}, abstract = {Three series of semiflexible and rigid main-chain polyesters containing photoreactive mesogenic units derived from p-phenylenediacrylic acid (PDA) and cinnamic acid have been synthesized by high-temperature polycondensation. The thermal and mesomorphic properties of the polymers have been determined. The photochemical behavior of polymer P-[1]-T, which contains a PDA unit, has been studied both in solution and in films. In solution, [2+2] photocycloaddition, E/Z photoisomerization, and photo-Fries rearrangement can take place. In contrast, the dominant process in spin-coated films is the [2+2] photocycloaddition reaction, which causes crosslinking of the polymer. In films, the photochemistry and induction of anisotropy are strongly influenced by the aggregation of the PDA phenylester unit. A dichroism of about 0.2 has been induced in films by irradiation with linearly polarized UV light, and thus the capability of these films to induce optical anisotropy and align liquid crystals has been demonstrated. Liquid-crystalline cells have been made with polarized irradiated films of P[1]-T as aligning layers. A commercial liquid-crystalline mixture has been used for this study, and a similar liquid-crystalline order determined by polarized Fourier transform infrared to a commercial cell with rubbed polyimide as an aligning layer has been detected. Because of crosslinking of the irradiated P[1]-T photoaligning layer, the photoinduced anisotropy is stable at high temperatures, and the liquid-crystalline molecules are insoluble in the irradiated polymer. (c) 2005 Wiley Periodicals, Inc}, language = {en} } @article{StrackeWendhorffGoldmannetal.2000, author = {Stracke, A. and Wendhorff, Joachim Heinz and Goldmann, Daniela and Janietz, Dietmar and Stiller, Burkhard}, title = {Gain effects in optical storage : thermal induction of a surface relief grating in a smectic liquid crystal}, year = {2000}, language = {en} } @article{StillerKoepnickMuzikanteetal.1999, author = {Stiller, Burkhard and K{\"o}pnick, Thomas and Muzikante, I. and Neilands, O. and Utinans, M. and Dubrovich, O. and Karageorgiev, Peter and Brehmer, Ludwig}, title = {Optically induced switching effect of polymer containing indandione-1,3-pyridinium betaine side chains}, issn = {0378-2271}, year = {1999}, language = {en} } @article{StillerKarageorgievPerezetal.2000, author = {Stiller, Burkhard and Karageorgiev, Peter and Perez, E. and Valez, M. and Reiche, J{\"u}rgen and Prescher, Dietrich and Dietzel, Birgit and Brehmer, Ludwig}, title = {Scanning kelvin microscopy as a tool for visualisation of optically induced molecular switching in azobenzene self assembling films}, issn = {0142-2421}, year = {2000}, language = {en} } @article{StillerKarageorgievGeueetal.2004, author = {Stiller, Burkhard and Karageorgiev, Peter and Geue, Thomas and Morawetz, Knut and Saphiannikova, Marina and Mechau, Norman and Neher, Dieter}, title = {Optically induced mass transport studied by scanning near-field optical- and atomic force microscopy}, issn = {0204-3467}, year = {2004}, abstract = {Some functionalised thin organic films show a very unusual property, namely the light induced material transport. This effect enables to generate three-dimensional structures on surfaces of azobenzene containing films only caused by special optical excitation. The physical mechanisms underlying this phenomenon have not yet been fully understood, and in addition, the dimensions of structures created in that way are macroscopic because of the optical techniques and the wavelength of the used light. In order to gain deeper insight into the physical fundamentals of this phenomenon and to open possibilities for applications it is necessary to create and study structures not only in a macroscopic but also in nanometer range. We first report about experiments to generate optically induced nano structures even down to 100 nm size. The optical stimulation was therefore made by a Scanning Near-field Optical Microscope (SNOM). Secondly, physical conditions inside optically generated surface relief gratings were studied by measuring mechanical properties with high lateral resolution via pulse force mode and force distance curves of an AFM}, language = {en} }