@article{FerTietjenJeltschetal.2017, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian and Trauth, Martin H.}, title = {Modelling vegetation change during Late Cenozoic uplift of the East African plateaus}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {467}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2016.04.007}, pages = {120 -- 130}, year = {2017}, abstract = {The present-day vegetation in the tropics is mainly characterized by forests worldwide except in tropical East Africa, where forests only occur as patches at the coast and in the uplands. These forest patches result from the peculiar aridity that is linked to the uplift of the region during the Late Cenozoic. The Late Cenozoic vegetation history of East Africa is of particular interest as it has set the scene for the contemporary events in mammal and hominin evolution. In this study, we investigate the conditions under which these forest patches could have been connected, and a previous continuous forest belt could have extended and fragmented. We apply a dynamic vegetation model with a set of climatic scenarios in which we systematically alter the present-day environmental conditions such that they would be more favourable for a continuous forest belt in tropical East Africa. We consider varying environmental factors, namely temperature, precipitation and atmospheric CO2 concentrations. Our results show that all of these variables play a significant role in supporting the forest biomes and a continuous forest belt could have occurred under certain combinations of these settings. With our current knowledge of the palaeoenvironmental history of East Africa, it is likely that the region hosted these conditions during the Late Cenozoic. Recent improvements on environmental hypotheses of hominin evolution highlight the role of periods of short and extreme climate variability during the Late Cenozoic specific to East Africa in driving evolution. Our results elucidate how the forest biomes of East Africa can appear and disappear under fluctuating environmental conditions and demonstrate how this climate variability might be recognized on the biosphere level.}, language = {en} } @article{FerTietjenJeltsch2016, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian}, title = {High-resolution modelling closes the gap between data and model simulations for Mid-Holocene and present-day biomes of East Africa}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {444}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2015.12.001}, pages = {144 -- 151}, year = {2016}, abstract = {East Africa hosts a striking diversity of terrestrial ecosystems, which vary both in space and time due to complex regional topography and a dynamic climate. The structure and functioning of these ecosystems under this environmental setting can be studied with dynamic vegetation models (DVMs) in a spatially explicit way. Yet, regional applications of DVMs to East Africa are rare and a comprehensive validation of such applications is missing. Here, we simulated the present-day and mid-Holocene vegetation of East Africa with the DVM, LPJ-GUESS and we conducted an exhaustive comparison of model outputs with maps of potential modern vegetation distribution, and with pollen records of local change through time. Overall, the model was able to reproduce the observed spatial patterns of East African vegetation. To see whether running the model at higher spatial resolutions (10\&\#8242; × 10\&\#8242;) contribute to resolve the vegetation distribution better and have a better comparison scale with the observational data (i.e. pollen data), we run the model with coarser spatial resolution (0.5° × 0.5°) for the present-day as well. Both the area- and point-wise comparison showed that a higher spatial resolution allows to better describe spatial vegetation changes induced by the complex topography of East Africa. Our analysis of the difference between modelled mid-Holocene and modern-day vegetation showed that whether a biome shifts to another is best explained by both the amount of change in precipitation it experiences and the amount of precipitation it received originally. We also confirmed that tropical forest biomes were more sensitive to a decrease in precipitation compared to woodland and savanna biomes and that Holocene vegetation changes in East Africa were driven not only by changes in annual precipitation but also by changes in its seasonality.}, language = {en} }