@article{TietjenZeheJeltsch2009, author = {Tietjen, Britta and Zehe, Erwin and Jeltsch, Florian}, title = {Simulating plant water availability in dry lands under climate change : a generic model of two soil layers}, issn = {0043-1397}, doi = {10.1029/2007WR006589}, year = {2009}, abstract = {Dry lands are exposed to a highly variable environment and face a high risk of degradation. The effects of climate change are likely to increase this risk; thus a profound knowledge of the system dynamics is crucial for evaluating management options. This applies particularly for the interactions between water and vegetation, which exhibit strong feedbacks. To evaluate these feedbacks and the effects of climate change on soil moisture dynamics, we developed a generic, process-based, spatially explicit soil moisture model of two soil layers, which can be coupled with vegetation models. A time scale relevant for ecological processes can be simulated without difficulty, and the model avoids complex parameterization with data that are unavailable for most regions of the world. We applied the model to four sites in Israel along a precipitation and soil type gradient and assessed the effects of climate change by comparing possible climatic changes with present climate conditions. The results show that in addition to temperature, the total amount of precipitation and its intra-annual variability are an important driver of soil moisture patterns. This indicates that particularly with regard to climate change, the approach of many ecological models that simulate water dynamics on an annual base is far too simple to make reliable predictions. Thus, the introduced model can serve as a valuable tool to improve present ecological models of dry lands because of its focus on the applicability and transferability.}, language = {en} } @article{TietjenJeltschZeheetal.2010, author = {Tietjen, Britta and Jeltsch, Florian and Zehe, Erwin and Classen, Nikolaus and Groengroeft, Alexander and Schiffers, Katja and Oldeland, Jens}, title = {Effects of climate change on the coupled dynamics of water and vegetation in drylands}, issn = {1936-0584}, doi = {10.1002/Eco.70}, year = {2010}, abstract = {Drylands worldwide are exposed to a highly variable environment and face a high risk of degradation. The effects of global climate change such as altered precipitation patterns and increased temperature leading to reduced water availability will likely increase this risk. At the same time, an elevated atmospheric CO2 level could mitigate the effects of reduced water availability by increasing the water use efficiency of plants. To prevent degradation of drylands, it is essential to understand the underlying processes that affect water availability and vegetation cover. Since water and vegetation are strongly interdependent in water-limited ecosystems, changes can lead to highly non- linear effects. We assess these effects by developing an ecohydrological model of soil moisture and vegetation cover. The water component of the model simulates the daily dynamics of surface water and water contents in two soil layers. Vegetation is represented by two functional types: shrubs and grasses. These compete for soil water and strongly influence hydrological processes. We apply the model to a Namibian thornbush savanna and evaluate the separate and combined effects of decreased annual precipitation, increased temperature, more variable precipitation and elevated atmospheric CO2 on soil moisture and on vegetation cover. The results show that two main factors control the response of plant types towards climate change, namely a change in water availability and a change in water allocation to a specific plant type. Especially, reduced competitiveness of grasses can lead to a higher risk of shrub encroachment in these systems.}, language = {en} } @article{TietjenHuth2006, author = {Tietjen, Britta and Huth, Andreas}, title = {Modelling dynamics of managed tropical rainforests - An aggregated approach}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {199}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2005.11.045}, pages = {421 -- 432}, year = {2006}, abstract = {The overuse of rainforests in the last century and its consequences necessitate a rethinking of logging policies. To this end models have been developed to simulate rainforest dynamics and to allow optional management strategies to be evaluated. Parameterisation of presently existing models for a certain site needs a lot of work, thus the parameterisation effort is too high to apply the models to a wide range of rainforests. Hence, in this paper we introduce the simplified model FORREG using the knowledge we have gained from a more complex model, FORMIX3-Q. The FORREG model uses differential equations to determine the volume growth of three successional species groups. Parameterisation is simplified by a genetic algorithm, which determines the required internal model parameters from characteristics of the forest dynamics. The new model is employed to assess the sustainability of various logging policies in terms of yield and damage. Results for three forests are discussed: (1) the tropical lowland rain forest in the Deramakot Forest Reserve, (2) the Lambir National Park in Malaysia and (3) a subtropical forest in Paraguay. Our model reproduces both undisturbed forest dynamics and dynamics of logged forests simulated with FORMIX3-Q very well. However, the resultant volumes of yield and damage differ slightly from those gained by FORMIX3-Q if short logging cycles are simulated. Choosing longer logging cycles leads to a good correspondence of both models. For the Deramakot Forest Reserve different logging cycles are compared and discussed. (c) 2006 Elsevier B.V. All rights reserved.}, language = {en} } @article{SynodinosTietjenLohmannetal.2018, author = {Synodinos, Alexis D. and Tietjen, Britta and Lohmann, Dirk and Jeltsch, Florian}, title = {The impact of inter-annual rainfall variability on African savannas changes with mean rainfall}, series = {Journal of theoretical biology}, volume = {437}, journal = {Journal of theoretical biology}, publisher = {Elsevier Ltd.}, address = {London}, issn = {0022-5193}, doi = {10.1016/j.jtbi.2017.10.019}, pages = {92 -- 100}, year = {2018}, abstract = {Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability.}, language = {en} } @article{SynodinosTietjenJeltsch2015, author = {Synodinos, Alexios D. and Tietjen, Britta and Jeltsch, Florian}, title = {Facilitation in drylands: Modeling a neglected driver of savanna dynamics}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {304}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2015.02.015}, pages = {11 -- 21}, year = {2015}, abstract = {Our current understanding regarding the functioning of the savanna ecosystem describes savannas as either competition- or disturbance-dependent. Within this generalized view, the role and importance of facilitation have been mostly neglected. This study presents a mathematical model of savannas with coupled soil moisture-vegetation dynamics, which includes interspecific competition and environmental disturbance. We find that there exist environmental and climatic conditions where grass facilitation toward trees plays an important role in supporting tree cover and by extension preserving the savanna biome. We, therefore, argue that our theoretical results in combination with the first empirical studies on the subject should stimulate further research into the role of facilitation in the savanna ecosystem, particularly when analyzing the impact of past and projected climatic changes on it. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{SchiffersTielboergerTietjenetal.2011, author = {Schiffers, Katja and Tielboerger, Katja and Tietjen, Britta and Jeltsch, Florian}, title = {Root plasticity buffers competition among plants theory meets experimental data}, series = {Ecology : a publication of the Ecological Society of America}, volume = {92}, journal = {Ecology : a publication of the Ecological Society of America}, number = {3}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, pages = {610 -- 620}, year = {2011}, abstract = {Morphological plasticity is a striking characteristic of plants in natural communities. In the context of foraging behavior particularly, root plasticity has been documented for numerous species. Root plasticity is known to mitigate competitive interactions by reducing the overlap of the individuals' rhizospheres. But despite its obvious effect on resource acquisition, plasticity has been generally neglected in previous empirical and theoretical studies estimating interaction intensity among plants. In this study, we developed a semi-mechanistic model that addresses this shortcoming by introducing the idea of compensatory growth into the classical-zone-of influence (ZOI) and field-of-neighborhood (FON) approaches. The model parameters describing the belowground plastic sphere of influence (PSI) were parameterized using data from an accompanying field experiment. Measurements of the uptake of a stable nutrient analogue at distinct distances to the neighboring plants showed that the study species responded plastically to belowground competition by avoiding overlap of individuals' rhizospheres. An unexpected finding was that the sphere of influence of the study species Bromus hordeaceus could be best described by a unimodal function of distance to the plant's center and not with a continuously decreasing function as commonly assumed. We employed the parameterized model to investigate the interplay between plasticity and two other important factors determining the intensity of competitive interactions: overall plant density and the distribution of individuals in space. The simulation results confirm that the reduction of competition intensity due to morphological plasticity strongly depends on the spatial structure of the competitive environment. We advocate the use of semi-mechanistic simulations that explicitly consider morphological plasticity to improve our mechanistic understanding of plant interactions.}, language = {en} } @article{MuellervanSchaikBlumeetal.2014, author = {M{\"u}ller, Eva Nora and van Schaik, Loes and Blume, Theresa and Bronstert, Axel and Carus, Jana and Fleckenstein, Jan H. and Fohrer, Nicola and Geissler, Katja and Gerke, Horst H. and Gr{\"a}ff, Thomas and Hesse, Cornelia and Hildebrandt, Anke and H{\"o}lker, Franz and Hunke, Philip and K{\"o}rner, Katrin and Lewandowski, J{\"o}rg and Lohmann, Dirk and Meinikmann, Karin and Schibalski, Anett and Schmalz, Britta and Schr{\"o}der-Esselbach, Boris and Tietjen, Britta}, title = {Scales, key aspects, feedbacks and challenges of ecohydrological research in Germany}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {58}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {4}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2014,4_2}, pages = {221 -- 240}, year = {2014}, abstract = {Ecohydrology analyses the interactions of biotic and abiotic aspects of our ecosystems and landscapes. It is a highly diverse discipline in terms of its thematic and methodical research foci. This article gives an overview of current German ecohydrological research approaches within plant-animal-soil-systems, meso-scale catchments and their river networks, lake systems, coastal areas and tidal rivers. It discusses their relevant spatial and temporal process scales and different types of interactions and feedback dynamics between hydrological and biotic processes and patterns. The following topics are considered key challenges: innovative analysis of the interdisciplinary scale continuum, development of dynamically coupled model systems, integrated monitoring of coupled processes at the interface and transition from basic to applied ecohydrological science to develop sustainable water and land resource management strategies under regional and global change.}, language = {de} } @article{LohmannTietjenBlaumetal.2014, author = {Lohmann, Dirk and Tietjen, Britta and Blaum, Niels and Joubert, David Francois and Jeltsch, Florian}, title = {Prescribed fire as a tool for managing shrub encroachment in semi-arid savanna rangelands}, series = {Journal of arid environments}, volume = {107}, journal = {Journal of arid environments}, publisher = {Elsevier}, address = {London}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2014.04.003}, pages = {49 -- 56}, year = {2014}, abstract = {Savanna rangelands worldwide are threatened by shrub encroachment, i.e. the increase of woody plant species at the cost of perennial grasses, causing a strong decline in the productivity of domestic livestock production. Although recent studies indicate that fire might be of great importance for semi-arid and arid savanna dynamics, it is largely not applied in the management of semi-arid rangelands especially with regard to woody plant control. We used the eco-hydrological savanna model EcoHyD to simulate the effects of different fire management strategies on semi-arid savanna vegetation and to assess their longterm suitability for semi-arid rangeland management. Simulation results show that prescribed fires, timed to kill tree seedlings prevented shrub encroachment for a broad range of livestock densities while the possible maximum long-term cattle densities on the simulated semi-arid rangeland in Namibia increased by more than 30\%. However, when grazing intensity was too high, fire management failed in preventing shrub encroachment. Our findings indicate that with regard to fire management a clear distinction between mesic and more arid savannas is necessary: While the frequency of fires is of relevance for mesic savannas, we recommend a fire management focussing on the timing of fire for semi-arid and arid savannas. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{LohmannTietjenBlaumetal.2012, author = {Lohmann, Dirk and Tietjen, Britta and Blaum, Niels and Joubert, David F. and Jeltsch, Florian}, title = {Shifting thresholds and changing degradation patterns: climate change effects on the simulated long-term response of a semi-arid savanna to grazing}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {49}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/j.1365-2664.2012.02157.x}, pages = {814 -- 823}, year = {2012}, abstract = {1. The complex, nonlinear response of dryland systems to grazing and climatic variations is a challenge to management of these lands. Predicted climatic changes will impact the desertification of drylands under domestic livestock production. Consequently, there is an urgent need to understand the response of drylands to grazing under climate change. 2. We enhanced and parameterized an ecohydrological savanna model to assess the impacts of a range of climate change scenarios on the response of a semi-arid African savanna to grazing. We focused on the effects of temperature and CO2 level increase in combination with changes in inter- and intra-annual precipitation patterns on the long-term dynamics of three major plant functional types. 3. We found that the capacity of the savanna to sustain livestock grazing was strongly influenced by climate change. Increased mean annual precipitation and changes in intra-annual precipitation pattern have the potential to slightly increase carrying capacities of the system. In contrast, decreased precipitation, higher interannual variation and temperature increase are leading to a severe decline of carrying capacities owing to losses of the perennial grass biomass. 4. Semi-arid rangelands will be at lower risk of shrub encroachment and encroachment will be less intense under future climatic conditions. This finding holds in spite of elevated levels of atmospheric CO2 and irrespective of changes in precipitation pattern, because of the drought sensitivity of germination and establishment of encroaching species. 5. Synthesis and applications. Changes in livestock carrying capacities, both positive and negative, mainly depend on the highly uncertain future rainfall conditions. However, independent of the specific changes, shrub encroachment becomes less likely and in many cases less severe. Thus, managers of semi-arid rangelands should shift their focus from woody vegetation towards perennial grass species as indicators for rangeland degradation. Furthermore, the resulting reduced competition from woody vegetation has the potential to facilitate ecosystem restoration measures such as re-introduction of desirable plant species that are only little promising or infeasible under current climatic conditions. On a global scale, the reductions in standing biomass resulting from altered degradation dynamics of semi-arid rangelands can have negative impacts on carbon sequestration.}, language = {en} } @article{LohmannGuoTietjen2018, author = {Lohmann, Dirk and Guo, Tong and Tietjen, Britta}, title = {Zooming in on coarse plant functional types-simulated response of savanna vegetation composition in response to aridity and grazing}, series = {Theoretical ecology}, volume = {11}, journal = {Theoretical ecology}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1874-1738}, doi = {10.1007/s12080-017-0356-x}, pages = {161 -- 173}, year = {2018}, abstract = {Precipitation and land use in terms of livestock grazing have been identified as two of the most important drivers structuring the vegetation composition of semi-arid and arid savannas. Savanna research on the impact of these drivers has widely applied the so-called plant functional type (PFT) approach, grouping the vegetation into two or three broad types (here called meta-PFTs): woody plants and grasses, which are sometimes divided into perennial and annual grasses. However, little is known about the response of functional traits within these coarse types towards water availability or livestock grazing. In this study, we extended an existing eco-hydrological savanna vegetation model to capture trait diversity within the three broad meta-PFTs to assess the effects of both grazing and mean annual precipitation (MAP) on trait composition along a gradient of both drivers. Our results show a complex pattern of trait responses to grazing and aridity. The response differs for the three meta-PFTs. From our findings, we derive that trait responses to grazing and aridity for perennial grasses are similar, as suggested by the convergence model for grazing and aridity. However, we also see that this only holds for simulations below a MAP of 500 mm. This combined with the finding that trait response differs between the three meta-PFTs leads to the conclusion that there is no single, universal trait or set of traits determining the response to grazing and aridity. We finally discuss how simulation models including trait variability within meta-PFTs are necessary to understand ecosystem responses to environmental drivers, both locally and globally and how this perspective will help to extend conceptual frameworks of other ecosystems to savanna research.}, language = {en} }