@phdthesis{Rose2003, author = {Rose, Andreas}, title = {Analysis of phenolic compounds by dint of GDH-biosensors and immunoassays}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001048}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {In den letzten Jahren gerieten phenolische Substanzen, wie z.B. Chlor-, Nitrophenol oder Alkylphenolethoxylate aufgrund ihrer Toxizit{\"a}t sowie ihres kanzerogenen und endokrinen Potentials in das Interesse der {\"O}ffentlichkeit. Diese Substanzen gelangen in großen Mengen, z.B. aus industriellen Prozessen (Papier-, Kunststoff-, oder Lederindustrie) oder als Abbauprodukte von Pflanzenschutzmitteln in die Umwelt. Ziel dieser Arbeit war es, einfache biochemische Bestimmungsmethoden f{\"u}r verschiedene phenolische Umweltschadstoffe auf Basis biochemischer Erkennungselemente zu entwickeln. Diese sollten als Screeningmethoden in der Vor-Ort-Analytik einsetzbar sein. Die Anwendung sollte kosteng{\"u}nstig und einfach durchzuf{\"u}hren sein, so dass die Messung kein hochwissenschaftliches Personal erfordert. Daher stand im Hintergrund der Arbeit die Integration der Analysenmethode in ein kompaktes Handger{\"a}t. Zu diesem Zweck wurde ein Biosensor entwickelt der zur direkten Messung und in Kombination mit einem Immunoassay einsetzbar ist: 1.) Elektrochemischer Biosensor Ein elektrochemischer Biosensor stellt die Verbindung zwischen einer Elektrode und der biologischen Komponente dar. Als Messprinzip wurde die Amperometrie gew{\"a}hlt. Hierbei wird die Pr{\"a}senz des nachzuweisenden Stoffes durch die angelegte Spannung am Sensor visualisiert, da beim Vorhandensein ein Stromfluss gemessen wird. Um die Signalintensit{\"a}t zu erh{\"o}hen k{\"o}nnen Enzyme als Katalysatoren genutzt werden, die in der Lage sind die R{\"u}ckreaktion der Elektrodenreaktion zu realisieren. In diesem Fall wurde Glucose-Dehydrogenase (GDH) verwendet, die oxidierte phenolische Verbindungen reduzieren kann. Zusammen mit der Oxidation an der Sensoroberfl{\"a}che bildet sich ein Verst{\"a}rkungszyklus aus, der das urspr{\"u}ngliche Signal vielfach erh{\"o}ht. Wir waren in der Lage, GDH durch Einbetten in ein Polymerennetzwerk auf der Oberfl{\"a}che einer gedruckten Platin-Dickschicht-Elektrode zu immobilisieren. Als Resultat erhielten wir einen sehr empfindlichen und {\"a}ußerst stabilen Biosensor. Seine schnelle Ansprechzeit erm{\"o}glicht den Einsatz in automatisierten Fließsystemen zur Messung großer Probenzahlen. Der Einsatz in einem manuell betriebenen Handger{\"a}t konnte ebenfalls realisiert werden und brachte nur geringe Beeintr{\"a}chtigungen in bezug auf die Empfindlichkeit der Messung. Die erfolgreiche Implementierung des Biosensors in das Handger{\"a}t wurde in Rahmen eines internationalen Workshops in Barcelona, anhand der {\"U}berpr{\"u}fung der Reinigungsleistung von Kl{\"a}rwerken, gezeigt. 2.) Kombination mit Immunoassays Der Einsatzbereich der GDH-Biosensoren l{\"a}sst sich durch die Kombination mit anderen Techniken erweitern, wobei der Sensor zur Visualisierung der Nachweisreaktion dient. In diesem Fall kann der Sensor zur Bestimmung der Enzymaktivit{\"a}t von ß?Galactosidase (ßGal) verwendet werden. Der Nachweis geringster Enzymmengen wurde realisiert. Die ßGal wird zur Markierung eines Analytanalogen in Immunoassays verwendet, um die Bindung von Antik{\"o}rper und Analytmolek{\"u}l sichtbar zu machen. Im Immunoassay bildet sich ein Gleichgewicht zwischen Antik{\"o}rper, unmarkiertem Analyt und markiertem Analytanalog (Tracer) aus. {\"U}ber die Bestimmung der Enzymaktivit{\"a}t kann man die Analytkonzentration in der Probe errechnen. Wir haben unseren GDH-Biosensor erfolgreich mit zwei Techniken kombiniert. Zum Einen mit einem Assay zur Bestimmung von Nitrophenol, der in einem automatisiertem Fließsystem realisiert wurde. Hier wird die Mischung aus Antik{\"o}rpern, Analyt und Tracer {\"u}ber eine S{\"a}ule gegeben und gesp{\"u}lt. Die gebundenen Bestandteile werden durch den GDH-Biosensor quantifiziert. Zum Anderen wurde ein Kapillarimmunoassay entwickelt, der in das Handger{\"a}t integriert werden kann. Dabei wird der Antik{\"o}rper direkt an der Kapillare fixiert. Die Probe wird mit Tracer vermischt und in die Kapillare gegeben. Dort bildet sich das Gleichgewicht aus und weitere Probenbestandteile werden im Sp{\"u}lschritt eliminiert. Die Analytkonzentration wird durch die Bestimmung des gebunden Tracers (Aktivit{\"a}t der ßGal) mit Hilfe des GDH-Biosensors realisiert.}, language = {en} }