@misc{DemskeSuetterlinRostetal.2013, author = {Demske, Ulrike and S{\"u}tterlin, Sabine and Rost, Sophia and Zimmermann, Matthias and Kampe, Heike and Eckardt, Barbara and Horn-Conrad, Antje}, title = {Portal Wissen = Borders}, number = {02/2013}, organization = {University of Potsdam, Press and Public Relations Department}, issn = {2198-9974}, doi = {10.25932/publishup-44143}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441430}, pages = {55}, year = {2013}, abstract = {The new edition of the Potsdam Research Magazine "Portal Wissen" approaches the subject "Borders" from different perspectives. As a linguist, this headline makes me think of linguistic borders and the effects that might result from the contact of two languages at a particular border. There is, for instance, ample evidence of code-switching, i.e. the use of material from at least two languages in a single utterance. The reasons for code-switching can be manifold. On the one hand, code-switching may result from a limited language competence, for example if a speaker lacks a particular word in a nonnative language. On the other hand, code-switching may be a matter of prestige if the speaker wants to demonstrate his or her affiliation to a certain social group by switching languages. If code-switching does not only occur sporadically but involves whole language communities over a longer period of time, it can result in significant changes of the involved languages. Which language "gives" and which one "takes" is determined by sociolinguistic factors. It is, hence, quite easy to predict that German varieties spoken in language islands in South and Eastern Europe as well as in North and Latin America will absorb more and more language material from their neighbouring languages until they disappear unless political will strives to preserve these language varieties. Increasing mobility of modern societies has multiplied the extent and the intensity of language contact and certainly comprises a large number of different contact situations besides the one most commonly known, i.e. the contact between German and English. From a historic point of view, German witnesses a strong influence of various Romance languages such as Latin, French and Italian. In Potsdam, one cannot help being reminded of the French influence during the 18th century. Overcoming language borders becomes also apparent in the everyday life of an international research university. In March this year, the Annual Conference of the German Linguistic Society took place in Potsdam, with more than 500 participants. Lingua franca of this conference was English. Compared to previous conferences, this further increased the number of international participants. The articles in this edition illustrate various approaches to the topic "Borders": On the trail of "Boundary Surveys", we follow the Australian explorer Ludwig Leichhardt. "Travellers Across Borders" is focussed on articles dealing with the literature of the colonial Caribbean or with the work of an Italian geologist deep beneath the earth's surface, for example. Looking for the "Boundless", our authors follow scientists who discuss questions like "Why love hurts?". The present issue of "Portal Wissen" also takes into account "Drawing Up Borders" in an article that is concerned with the limits of workrelated stress. Instances of successful "Border Crossing" are provided by the "Handkerchief Lab" as well as by new biotechnological applications. I would like to wish you inspiring border experiences, hoping that you will get many impulses for crossing professional borders in your field of expertise. Prof. Ulrike Demske Professor of the History and the Varieties of the German Language Vice President International Affairs, Alumni and Fundraising}, language = {en} } @misc{EngelHornConradScholzetal.2020, author = {Engel, Silke and Horn-Conrad, Antje and Scholz, Jana and Schapranow, Matthieu-Patrick and Zimmermann, Matthias and Kampe, Heike}, title = {Portal Wissen = Health}, number = {02/2020}, organization = {University of Potsdam, Press and Public Relations Department}, issn = {2198-9974}, doi = {10.25932/publishup-48145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-481458}, pages = {58}, year = {2020}, abstract = {The Coronavirus pandemic has made it very clear how much health and well-being determine our lives. And that science led the way in this regard could not be ignored. At the University of Potsdam, too, many researchers deal with aspects of health maintenance, whether in nutritional sciences, sports and rehabilitation medicine, biochemistry, or psychology. Their research includes supporting chronically ill children and the professional handling of risks, as you can read in this issue of our magazine. With the establishment of our seventh faculty, the Faculty of Health Sciences, these and many new medical topics are getting more attention at the University of Potsdam. While in the beginning, the "Brandenburg Health Campus" funded by the federal state of Brandenburg was a virtual network of university and non-university research, it is now getting more points of intersection and, not only since COVID-19, a very practical use and plausible to everyone. The Faculty of Health Sciences, founded in 2018, is supported by three institutions: the University of Potsdam, the Brandenburg Technical University Cottbus-Senftenberg and the Brandenburg Medical School in Neuruppin. They pursue an interdisciplinary approach that holistically develops teaching, transfers new scientific findings from theory to practice and thus further improves overall medical care in Brandenburg. Their vision of being a central platform of research, teaching, and transfer combines socially relevant issues and existing expertise to align them with the needs of people in Brandenburg and use them to their benefit. This interdisciplinary structure has never been more important to advancing patient-oriented basic research and health care models. An innovative concept that can make Brandenburg a pioneer. In the meantime, the Faculty of Health Sciences has established 16 new professorships at the supporting universities, which are concerned with medicine and healthy aging, health services research, nursing and rehabilitation sciences, and telemedicine. Cardiology and physiology will play a central role as well. In general, the innovative faculty counts on strong interdisciplinary relationships, for example with nutritional sciences and the digital health department at the Digital Engineering Faculty. The role of digitization and well-prepared data in combating the Coronavirus pandemic can also be read about in this issue. As usual, the research magazine addresses the full range of research at the university: We introduce historian Dominik Geppert, who deals with the history of unified Germany after 1990 embedded in the tensions created by a context of national unification, European integration, and global networking. In a self-experiment, we explored together with a psycholinguist how to research word-finding disorders. Last but not least, we were able to take part in a trip to Namibia, where ecologists from Potsdam examine wildlife management in the threatened savannah. Let them take you where kudu and springbok live!}, language = {en} } @misc{GoerlichHornConradKampeetal.2018, author = {G{\"o}rlich, Petra and Horn-Conrad, Antje and Kampe, Heike and Zimmermann, Matthias and Scholz, Jana and Engel, Silke and Schneider, Simon}, title = {Portal Wissen = Cosmos}, number = {02/2018}, organization = {University of Potsdam, Press and Public Relations Department}, issn = {2198-9974}, doi = {10.25932/publishup-44167}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441674}, pages = {53}, year = {2018}, abstract = {Speaking of the cosmos means speaking about nothing less than everything, about the entirety of space filled with matter and energy. We only see a tiny fraction of it from Earth: planets like Venus or stars like the Sun. There are at least 100 billion stars in our home galaxy alone. Bound by gravity, these luminescent celestial bodies of very hot gas form a system visible from Earth as a whitish ribbon, which we call the Milky Way. The observable cosmos contains at least 100 billion such galaxies with stars, cosmic dust, gas, and probably dark matter as well. The universe is 13.8 billion years old; crossing it once would probably take 78 billion light-years. Given these dimensions, it is hardly surprising that for us humans, the mystery of the properties of the cosmos is connected with questions of being. Where do we come from? Where are we going? Are we alone in the universe? Such questions are in the wheelhouse of astrophysicists, who explore the vastness of the cosmos through physical means, even though they, of course, deal with physical laws, mathematical formulas, and complicated measuring methods. In this issue of Portal Wissen, we talked with astrophysicists at the University of Potsdam about their research and everyday work. Lutz Wisotzki showed us a 3D spectrograph, which he has developed in collaboration with colleagues from the Leibniz Institute for Astrophysics (AIP) and six other European institutes. This technical masterpiece enables scientists to look deeply into space and to "journey" through time to galaxies shortly after the Big Bang. Philipp Richter introduced us to the astrophysics research initiative and demonstrated how the University of Potsdam is working together with the AIP, the Albert Einstein Institute (AEI) and the Deutsches Elektronen-Synchrotron (DESY) to train junior researchers. The newly appointed Professor of Stellar Astrophysics, Stephan Geier, presented us with stars so close together to each other that they appear to be one to the naked eye. The physicist, who is also a historian, researches their turbulent relationships. We have not confined ourselves to cosmic themes, though, but also questioned rather earthly matters such as modern consumption. We have thought about potential love relationships with robots and testimonials in literature and art. We learned why the rainforest in Central Africa disappeared 2,600 years ago, how to produce knee prostheses on a production line, and how animals in the field benefit from big data. But back to the cosmos. The writing of late astrophysicist Stephen Hawking fundamentally shaped our concepts and knowledge of the universe. And that is because he was both an important physicist and a literary genius. Hardly anyone has been able to capture difficult facts in such a clear, understandable, and beautiful language. With this exemplary understanding of science in mind, we hope to offer you a stimulating read. The Editors}, language = {en} } @article{GuentherSchueleZurelletal.2023, author = {G{\"u}nther, Oliver and Sch{\"u}le, Manja and Zurell, Damaris and Jeltsch, Florian and Roeleke, Manuel and Kampe, Heike and Zimmermann, Matthias and Scholz, Jana and Mikulla, Stefanie and Engbert, Ralf and Elsner, Birgit and Schlangen, David and Agrofylax, Luisa and Georgi, Doreen and Weymar, Mathias and Wagener, Thorsten and Bookhagen, Bodo and Eibl, Eva P. S. and Korup, Oliver and Oswald, Sascha and Thieken, Annegret and van der Beek, Peter}, title = {Portal Wissen = Excellence}, series = {Portal Wissen: The research magazine of the University of Potsdam}, journal = {Portal Wissen: The research magazine of the University of Potsdam}, number = {02/2023}, issn = {2198-9974}, doi = {10.25932/publishup-61145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611456}, pages = {58}, year = {2023}, abstract = {When something is not just good or very good, we often call it excellent. But what does that really mean? Coming from the Latin word "excellere," it describes things, persons, or actions that are outstanding or superior and distinguish themselves from others. It cannot get any better. Excellence is the top choice for being the first or the best. Research is no exception. At the university, you will find numerous exceptional researchers, outstanding projects, and, time and again, sensational findings, publications, and results. But is the University of Potsdam also excellent? A question that will certainly create a different stir in 2023 than it did perhaps 20 years ago. Since the launch of the Excellence Initiative in 2005, universities that succeed in winning the most comprehensive funding program for research in Germany have been considered - literally - excellent. Whether in the form of graduate schools, research clusters, or - since the program was continued in 2019 under the title "Excellence Strategy" - entire universities of excellence: Anyone who wants to be among the best research universities needs the seal of excellence. The University of Potsdam is applying for funding with three cluster proposals in the recently launched new round of the "Excellence Strategy of the German Federal and State Governments." One proposal comes from ecology and biodiversity research. The aim is to paint a comprehensive picture of ecological processes by examining the role of single individuals as well as the interactions among many species in an ecosystem to precisely determine the function of biodiversity. A second proposal has been submitted by the cognitive sciences. Here, the complex coexistence of language and cognition, development and learning, as well as motivation and behavior will be researched as a dynamic interrelation. The projects will include cooperation with the educational sciences to constantly consider linked learning and educational processes. The third proposal from the geo and environmental sciences concentrates on extreme and particularly devastating natural hazards and processes such as floods and droughts. The researchers examine these extreme events, focusing on their interaction with society, to be able to better assess the risks and damages they might involve and to initiate timely measures in the future. "All three proposals highlight the excellence of our performance," emphasizes University President Prof. Oliver G{\"u}nther, Ph.D. "The outlines impressively document our commitment, existing research excellence, and the potential of the University of Potsdam as a whole. The fact that three powerful consortia have come together in different subject areas shows that we have taken a good step forward on our way to becoming one of the top German universities." In this issue, we are looking at what is in and behind these proposals: We talked to the researchers who wrote them. We asked them about their plans in case their proposals are successful and they bring a cluster of excellence to the university. But we also looked at the research that has led to the proposals, has long shaped the university's profile, and earned it national and international recognition. We present a small selection of projects, methods, and researchers to illustrate why there really is excellent research in these proposals! By the way, "excellence" is also not the end of the flagpole. After all, the adjective "excellent" even has a comparative and a superlative. With this in mind, I wish you the most excellent pleasure reading this issue!}, language = {en} } @misc{HafnerZimmermannRostetal.2014, author = {Hafner, Johann Evangelist and Zimmermann, Matthias and Rost, Sophia and S{\"u}tterlin, Sabine and Kampe, Heike and Horn-Conrad, Antje and J{\"a}ger, Sophie and Eckardt, Barbara and Mangelsdorf, Birgit}, title = {Portal Wissen = Believe}, number = {01/2014}, organization = {University of Potsdam, Press and Public Relations Department}, issn = {2198-9974}, doi = {10.25932/publishup-44146}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441461}, pages = {55}, year = {2014}, abstract = {People want to know what is real. Children enjoy listening to a story but when my children were about four years old they started asking whether the story really happened or was just invented. Likewise, only on a higher level, our academic curiosity is fuelled by our interest in knowing what is real. When we analyze poetic texts or dreams we are trying to distinguish between the facts (e.g. neurological ones or linguistic structures) and merely assumed influences. Ideally we can present results that were logically understood by others and that we can repeat empirically. But in most cases this is not possible. We cannot read every book and cannot look through every microscope, not even within our own discipline. In the world we live in we depend on trusting the information of others, like how to get to the train station or what the weather is like in Ulaanbataar. This is why we are used to believing others, our friends or the news anchors. This is not a childish behavior but a necessity. Of course, it is risky because they could all be lying to us, like in a Truman Show situation. The only time we are able to know that we are in reality is when we transcend our selfconsciousness and when we accept two propositions: first, that we are not only objects but also subjects in the consciousness of others and second that our dialogic relations are again observed by a third party that is not part of this intersubjective world. For religious people this is "belief" - belief as the assumption that all human relations only become real, serious and beyond any doubt if they know they are under the eyes of God. Only before Him something is in itself and not only "for me" or "among us". That is why biblical language distinguishes between three forms of belief: the relationship with the world of things ("to believe that"), the relationship to the world of subjects ("to believe somebody") and the assumption of a subjective supernatural reality ("to believe in" or "faith"). From an academic point of view belief is a holistic hypothesis. Belief is not the opposite of knowledge but it is the attempt to save reality from doubt by comprehending the fragile empirical world as an expression of a stable transcendent world. When I talk to students they often ask not only about what I know but what I believe. As a professor for Religious Studies and a believing Catholic I am caught in the middle. On the one hand, it is my duty as a professor to doubt everything, i.e. to attribute each religious text to its historical context and sociological functions. On the other hand, I, as a Christian, consider certain religious documents, in my case the Bible, an interpretable but nevertheless irreversible, revealed text about the origin of reality. On weekdays the New Testament is a collection of ancient writings among many others, on Sundays it is the revelation. You can make a clear distinction between these two perspectives but it is difficult to decide whether doubt or belief is more real. This issue of "Portal Wissen" explores this dual relationship of belief. What is the attitude of science towards belief - is it a religious one? Where does science bring things to light that we can hardly believe or that make us believe (again)? What happens if research clears up erroneous assumptions or myths? Is science able to investigate things that are convincing but inexplicable? How can it maintain its credibility and develop even so? These questions appear again and again in the contributions of this "Portal Wissen". They form a manifold, exciting and surprising picture of the research projects and academics at the University of Potsdam. Believe me, it will be an enjoyable read. Prof. Johann Hafner Professor of Religious Studies with Focus on Christianity Dean of the Faculty of Arts}, language = {en} } @misc{KampeHornConradZimmermannetal.2019, author = {Kampe, Heike and Horn-Conrad, Antje and Zimmermann, Matthias and Scholz, Jana and G{\"o}rlich, Petra and Eckardt, Barbara and Krafzik, Carolin}, title = {Portal Wissen = Data}, number = {02/2019}, editor = {Engel, Silke and Zimmermann, Matthias}, organization = {University of Potsdam, Press and Public Relations Department}, issn = {2198-9974}, doi = {10.25932/publishup-44257}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442574}, pages = {54}, year = {2019}, abstract = {Data assimilation? Stop! Don't be afraid, please, come closer! No tongue twister, no rocket science. Or is it? Let's see. It is a matter of fact, however, that data assimilation has been around for a long time and (almost) everywhere. But only in the age of supercomputers has it assumed amazing proportions. Everyone knows data. Assimilation, however, is a difficult term for something that happens around us all the time: adaptation. Nature in particular has demonstrated to us for millions of years how evolutionary adaptation works. From unicellular organisms to primates, from algae to sequoias, from dinosaurs ... Anyone who cannot adapt will quickly not fit in anymore. We of course have also learned to adapt in new situations and act accordingly. When we want to cross the street, we have a plan of how to do this: go to the curb, look left and right, and only cross the street if there's no car (coming). If we do all this and adapt our plan to the traffic we see, we will not just safely cross the street, but we will also have successfully practiced data assimilation. Of course, that sounds different when researchers try to explain how data assimilation helps them. Meteorologists, for example, have been working with data assimilation for years. The German Weather Service writes, "In numerical weather prediction, data assimilation is the approximation of a model run to the actual development of the atmosphere as described by existing observations." What it means is that a weather forecast is only accurate if the model which is used for its calculation is repeatedly updated, i.e. assimilated, with new measurement data. In 2017 an entire Collaborative Research Center was established at the University of Potsdam, CRC 1294, to deal with the mathematical basics of data assimilation. For Portal Wissen, we asked the mathematicians and speakers of the CRC Prof. Sebastian Reich and Prof. Wilhelm Huisinga how exactly data assimilation works and in which areas of research they can be used profitably in the future. We have looked at two projects at the CRC itself: the analysis of eye movements and the research on space weather. In addition, the current issue is full of research projects that revolve around data in very different ways. Atmospheric physicist Markus Rex throws a glance at the spectacular MOSAiC expedition. Starting in September 2019, the German research icebreaker "Polarstern" will drift through the Arctic Ocean for a year and collect numerous data on ice, ocean, biosphere, and atmosphere. In the project "TraceAge", nutritionists will use the data from thousands of subjects who participated in a long-term study to find out more about the function of trace elements in our body. Computer scientists have developed a method to filter relevant information from the flood of data on the worldwide web so as to enable visually impaired to surf the Internet more easily. And a geophysicist is working on developing an early warning system for volcanic eruptions from seemingly inconspicuous seismic data. Not least, this issue deals with the fascination of fire and ice, the possibilities that digitization offers for administration, and the question of how to inspire children for sports and exercise. We hope you enjoy reading - and if you send us some of your reading experience, we will assimilate it into our next issue. Promised!}, language = {en} } @article{KampeKoenigRinkePetzoldtetal.2007, author = {Kampe, Heike and K{\"o}nig-Rinke, Marie and Petzoldt, Thomas and Benndorf, J{\"u}rgen}, title = {Direct effects of Daphnia-grazing, not infochemicals, mediate a shift towards large inedible colonies of the gelatinous green alga Sphaerocystis schroeteri}, issn = {0075-9511}, doi = {10.1016/j.limno.2007.01.001}, year = {2007}, abstract = {The influence of Daphnia galeata x hyalina grazing and of infochemicals released by the daphnids on the colony size and growth rate of the colonial gelatinous green alga Sphaerocystis schroeteri (Chlorococcales) was investigated in laboratory batch experiments run for 96 h. High zooplankton grazing pressure was exerted by a final concentration of 100 daphnids L-1 in the Daphnia treatments. Infochemicals were obtained by filtration (0.2 µm) of water from D. galeata x hyalina cultures (200 ind. L-1 exposed for 24 h). This filtrate was added to the S. schroeteri cultures in two concentrations corresponding to 7 and 50 daphnids L-1, respectively. The growth rate of S. schroeteri was neither affected significantly by direct Daphnia grazing nor by the presence of Daphnia infochemicals in comparison to the control. However, the portion of inedible S. schroeteri colonies (diameter > 50 µm) increased under direct grazing pressure, whereas the Daphnia infochemicals did not influence the colony size significantly. We conclude that the shift in colony size by direct zooplankton grazing denotes an effective defence mechanism against size selective feeding for colonial gelatinous green algae. This effective defence in combination with unchanged growth rates of the larger colonies (under non-limiting nutrient and light conditions) falsifies the assumption of a trade-off between minimising grazing losses and maximising growth by optimising the colony size.}, language = {en} } @misc{KampeScholzZimmermannetal.2016, author = {Kampe, Heike and Scholz, Jana and Zimmermann, Matthias and Eckardt, Barbara and Horn-Conrad, Antje}, title = {Portal Wissen = small}, number = {02/2016}, organization = {University of Potsdam, Press and Public Relations Department}, issn = {2198-9974}, doi = {10.25932/publishup-44162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441621}, pages = {58}, year = {2016}, abstract = {Let's be honest: even science wants to make it big, at least when it comes to discovering new knowledge. Yet if one thing belongs in the annals of successful research, it is definitely small things. Scientists have long understood that their job is to explore things that they don't see right away. Seneca once wrote, "If something is smaller than the great, this does not mean at all that it is insignificant." The smallest units of life, such as bacteria or viruses, can often have powerful effects. And again and again, (seemingly) large things must first be disassembled or reduced to small pieces in order to recognize their nature. One of the greatest secrets of our world - the atom, the smallest, if no longer indivisible, unit of chemical elements - revealed itself only by looking at its diminutive size. By no means is 'small' (German: klein) merely a counterpoint to large, at least in linguistic terms; the word comes from West Germanic klaini, which means 'fine' or 'delicate,' and is also related to the English word 'clean.' Fine and clean - certainly something worth striving for in scientific work. And a bit of attention to detail doesn't hurt either. This doesn't mean that researchers can be smallminded; they should be ready to expect the unexpected and to adjust their work accordingly. And even if they cannot attain their goals in the short term, they need staying power to keep themselves from being talked down, from giving up. Strictly speaking, research is like putting together a puzzle with tons of tiny pieces; you don't want it to end. Every discovery worthy of a Nobel Prize, every major research project, has to start with a small idea, with a tiny spark, and then the planning of the minutest details can begin. What follows is work focused on minuscule details: hours of interviews searching for the secret of the cerebellum (Latin for 'little brain'), days of field studies searching for Lilliputian forms of life, weeks of experimentation meant to render visible the microscopically tiny, months of archival research that brings odds and ends to light, or years of reading fine print. All while hunting for a big hit... This is why we've assembled a few 'little' stories about research at the University of Potsdam, under the motto: small, but look out! Nutritional scientists are working on rescuing some of the earth's smaller residents - mice - from the fate of 'lab rats' by developing alternatives to animal testing. Linguists are using innovative methods in several projects to investigate how small children learn languages. Astrophysicists in Potsdam are scanning the skies above Babelsberg for the billions of stars in the Magellan Cloud, which only seem tiny from down here. The Research Center Sanssouci, initiated by the Prussian Palaces and Gardens Foundation and the University of Potsdam, is starting small but will bring about great things for Potsdam's cultural landscape. Biologists are drilling down to the smallest building blocks of life, looking for genes in barley so that new strains with positive characteristics can be cultivated. Like we said: little things. Have fun reading! The Editorial}, language = {en} } @misc{KampeZimmermannHornConradetal.2017, author = {Kampe, Heike and Zimmermann, Matthias and Horn-Conrad, Antje and Scholz, Jana and Eckardt, Barbara}, title = {Portal Wissen = Earth}, number = {02/2017}, organization = {University of Potsdam, Press and Public Relations Department}, issn = {2198-9974}, doi = {10.25932/publishup-44165}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441652}, pages = {53}, year = {2017}, abstract = {Earth's surface is constantly changing. It is the synergetic overlap between the geosphere, biosphere, and climatic sphere and influences the development of our planet. It is our habitat and plays a key role in maintaining the wellbeing of humanity. Many aspects of this system as a whole, however, are not yet understood. This needs to change immediately because there is not much time left for the Earth - or for us. Photographer and filmmaker Yann Arthus- Bertrand warned in 2009, "In less than 200 years we have disturbed the balance of the Earth that has been created in over four billion years." Potsdam and Berlin geoscientists, biologists, and climatologists have now joined forces*: They are investigating processes of the Earth's surface in order to better understand them on various spatial and time scales and to predict how our living environment will develop. In this issue of the research magazine "Portal Wissen", we present some of the research projects as well as the researchers who drive them. We followed researchers to Ethiopia - to the "cradle of humankind" - where elaborate drilling is offering a glimpse into climate history. Analyses of the several-hundred-thousand- year old deposits provide insights not only for geological and climate researchers. Biologists were able to reconstruct how entire ecosystems developed over long periods using state-of-the-art genetic analysis. A geomicrobiologist shows us the vast insight you get when you cross disciplinary boundaries. His research is no longer taking place on and in the earth but even in outer space. The young researchers of the research training group StRatGy cut large boulders from the Argentinean Andes into the thinnest of slices in order to understand how the mountains developed. And a data analysis expert explains why it is not enough to collect and feed a lot of data into a computer; they also have to be made readable using the right analytic tools. "The world is a fine place and worth the fighting for," wrote Ernest Hemingway. This is exactly what researchers are doing when they look for solutions to prevent humanity from irreversibly damaging the Earth. We met a researcher who is working with colleagues throughout Europe to learn more about trace elements and using plants as pollutant "vacuum cleaners". And it was explained to us how satellite images taken from afar are revolutionizing nature conservation. The diversity of research at the University of Potsdam should not be forgotten. We followed administrative scientists on the trail of successful reforms around the world and we looked at how reading can be more successful. We asked what supplementary extracurricular lessons can offer (or not offer) and looked into the networked classroom of the future. Germanists also revealed their Brandenburg linguistic treasures to us, psychologists showed us their experiments, and a historian explained to us why the MfS - the GDR state security ministry - were active as development workers. Last but not least, we visited a chemist in the lab, were introduced to the language of climate images, and listened to a romance philologist who researches with all her senses. Enjoy your read! The Editors}, language = {en} } @misc{KampeZimmermannScholzetal.2017, author = {Kampe, Heike and Zimmermann, Matthias and Scholz, Jana and G{\"o}rlich, Petra and Eckardt, Barbara}, title = {Portal Wissen = rich}, number = {01/2017}, organization = {University of Potsdam, Press and Public Relations Department}, issn = {2198-9974}, doi = {10.25932/publishup-44164}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441642}, pages = {58}, year = {2017}, abstract = {The current Issue of Portal Wissen is entitled "reich", a German word with several meanings. Both an adjective and a noun, it can be translated as rich, wealthy, and abundant, or realm, empire, and kingdom. It is also part of words like Reichtum (wealth, fortune), Reichweite (reach, scope), lehrreich (informative, instructive) and ruhmreich (glorious, renowned*). Realms - a complex subject. While the worldly empires of mankind come and go, even if they often claim the opposite, and the eternal existence of the kingdom of heaven has not been credibly proven, another and much older realm has an almost inexhaustible wealth - the animal and plant kingdom. Speaking of wealth: Some people are rich and want to stay rich at any price. Others still want to become rich and are looking for a path to wealth - some for the fastest, some for the easiest, and some for the perfect path. There are even people who want to leave nothing to chance and use a scientific approach, for example the American author Wallace D. Wattles, who published the book The Science of Getting Rich in 1903. His essay was intended for "for the men and women whose most pressing need is for money; who wish to get rich first, and philosophize afterward." He was so convinced of his work that he even offered a guarantee of success. Anyone who followed his manual would "undoubtedly become rich because the science that is used here is an exact science, and failure is impossible." Wattles has been almost forgotten, but the secret of wealth - at least financial wealth - seems anything but deciphered. Some have got it, others want it. There are worlds in between - as well as envy, prejudices and ignorance. More than enough reason for us to look again at Wallace D. Wattles and his self-confidently presented alleged relationship between wealth and science, and to say: Yes! Of course, science makes us rich, but primarily rich in perception, experience and - in knowledge. Science in itself is not glorious but instructive. The great thing is: All can equally benefit from the wealth created by science at the same time. Nobody has to get rich at the expense of others, on the contrary: You can often achieve much more together with others. Everything else comes (almost) by itself. "Those who acquire knowledge are richly rewarded by God," is the religiously informed praise of sciences by the Islamic prophet Muhammad. The current issue of the Portal Wissen, however, focuses on facts, which is admittedly not in style at the moment. We therefore invite you to a tour of the University of Potsdam and its partners. It is about studies on the rich biodiversity of porpoises and lab mice. We present a historian who studies rich church treasures and talk with an education researcher about the secret of financial wealth. German philologists explain the rich language of literary criticism in the era of Enlightenment, and we follow a geo-scientist into the mountains where he moved large boulders to find the right stones. It is also about the cities of tomorrow, which have many high-rise buildings but are still (rich in) green, abundant water from once-in-acentury flash floods, and insects as an alternative to a rich diet of tomorrow. We take you to the border area of two disciplines where law and philosophy work hand in hand, talk with two literary scholars who are studying the astounding reach of the Schlager phenomenon of traditional German-language pop music, and learn from a sustainability researcher how to work together to achieve long-term solutions for pressing global problems. We wish you a pleasant read! The Editors}, language = {en} }